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Perspective Article

Present Focus on Target-Centric and 
Phenotypic Discovery: A Need for 
Innovation

Over the past decade, the standard approaches to drug dis-
covery and development have been the application of tar-
get-centric and phenotypic methods.1,2 The basic steps 
involved in these approaches are outlined in Figures 1 and 
2 and have been based primarily on a linear set of steps. 
These approaches have been successful in developing ther-
apeutics, yet the efficiency has been very low, with high 
development costs and low clinical success rates.7–9 A major 
reason for failure in the clinic is lack of efficacy due to an 
incomplete characterization of the clinical biology of the 
disease.8 A 2012 report from the President’s Council of 
Advisors on Science and Technology identified the need for 
innovation in developing new therapeutics.10 In addition, to 
address the challenge of innovation, two workshops at the 
National Institutes of Health (NIH) identified an opportu-
nity to combine the distinct fields of systems biology and 
pharmacology to create a novel approach to drug discovery 

and development that was named quantitative systems 
pharmacology (QSP).11,12

A key feature of systems biology is the integration of 
computational and quantitative experimental methods that 
lead to the creation of formal mathematical models of bio-
logical processes and the discovery of emergent properties 
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Abstract
Drug candidates exhibiting well-defined pharmacokinetic and pharmacodynamic profiles that are otherwise safe often fail 
to demonstrate proof-of-concept in phase II and III trials. Innovation in drug discovery and development has been identified 
as a critical need for improving the efficiency of drug discovery, especially through collaborations between academia, 
government agencies, and industry. To address the innovation challenge, we describe a comprehensive, unbiased, integrated, 
and iterative quantitative systems pharmacology (QSP)–driven drug discovery and development strategy and platform that 
we have implemented at the University of Pittsburgh Drug Discovery Institute. Intrinsic to QSP is its integrated use of 
multiscale experimental and computational methods to identify mechanisms of disease progression and to test predicted 
therapeutic strategies likely to achieve clinical validation for appropriate subpopulations of patients. The QSP platform can 
address biological heterogeneity and anticipate the evolution of resistance mechanisms, which are major challenges for 
drug development. The implementation of this platform is dedicated to gaining an understanding of mechanism(s) of disease 
progression to enable the identification of novel therapeutic strategies as well as repurposing drugs. The QSP platform will 
help promote the paradigm shift from reactive population-based medicine to proactive personalized medicine by focusing 
on the patient as the starting and the end point.
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not identified in the investigation of individual biological 
components.13 A major goal of QSP is to reinvent traditional 
pharmacology and replace the “one-gene, one-target, one-
mechanism” hypothesis14 with an in-depth understanding of 
the complex networks that are responsible for normal 
human and disease physiology using iterative quantitative 
experimental and computational methods.

Biological pathways have been studied for many years in 
biology and can be described as a series of reactions among 
molecules that result in changes in a cell such as the events 
in signaling, metabolism, cell cycle, and other biological 
processes. Pathways have been hand curated from the pub-
lished literature in searchable databases, such as the KEGG 
PATHWAY Database,15 that have been used to map molecu-
lar data sets (e.g., genomics and transcriptomics) to assist in 
understanding higher-level systems functions. In addition, 
pathways can be inferred from “omics” analyses of biologi-
cal samples.16,17 In particular, samples that are blood based 
(i.e., liquid biopsies) can easily be collected longitudinally 
and correlated with disease progression.18

Biological networks involve the interaction(s) among mul-
tiple pathways.19 In systems biology and QSP, biological net-
works are mathematically modeled for the quantitative analysis 
of the interactions (i.e., edges) among the components (i.e., 
nodes) of the network. In network analysis, it is possible to 
identify the upstream and downstream interactions for a spe-
cific node that can lead to an understanding of normal biologi-
cal regulation and pathophysiology. The creation of formal 
mathematical models at multiple temporal and spatial scales 
(molecules, cells, tissues, organs, organisms, and patients) of 

the networks involved in disease progression (pathology of the 
disease as it progresses) will be used to explain and to ulti-
mately predict the effects of drug action on network functions 
and disease physiology.17

A Definition of Quantitative Systems 
Pharmacology

QSP is still a relatively new field, and its definition continues 
to evolve based on the emphasis of the applications within aca-
demia and industry (e.g., network analyses v. pharmacokinet-
ics).20,21 An extensive definition is presented in the white paper 
that was prepared after the second NIH workshop.12 We have 
based our initial efforts in building a complete platform to 
practice QSP on a more focused definition: “Determining the 
mechanism(s) of disease progression and mechanism(s) of 
action of drugs on multi-scale systems through iterative and 
integrated computational and experimental methods to opti-
mize the development of therapeutic strategies.” Our goal in 
applying QSP is to improve the efficiency in the development 
of therapeutics through innovation and collaboration that will 
support the paradigm shift from reactive population-based 
medicine to prospective personalized medicine (Table 1).22,23

The Rationale for Implementing a QSP 
Platform

Multidisciplinary technological advancements in the post-
genomic era have fueled the generation of significant data. 
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Figure 1.  Target-centric drug discovery and development. The basic target-centric approach involves steps that begin with the 
investigation of the basic science. Although a holistic approach to the disease has not usually been applied, over the past few years 
additional information has been gleaned from patient data and network analyses as part of basic scientific information. The next 
step includes the identification (ID) of a druggable molecular target (i.e., a protein or gene associated with the disease), followed by 
the validation of this target by showing that modulation of the target has the ability to regulate disease-specific biological processes 
in in vitro and in vivo disease models. The next step involves the development of an assay measuring target activity, screening of 
selected libraries, and then the generation of leads from the validated hits. The optimization of leads to increase potency and to build 
in target specificity follows, and increasingly, the application of early safety and absorption, distribution, metabolism, and excretion 
testing in vitro. The application of target ID techniques such as chemical proteomics is increasingly being employed to identify 
additional on-target and off-target interactions. The next step involves preclinical testing with animal models for efficacy, toxicity, and 
pharmacokinetics. The next step involves phase I to III clinical trials.
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Integration and analyses of these data are essential to gain 
new knowledge, allowing us to associate readily observable 
human traits and disease phenotypes with variations at the 
molecular level. Our understanding of disease pathophysi-
ology is now increasing as we discover the underlying path-
ways and their coupling into cellular networks.24–33 
Understanding the molecular basis of disease progression 
will enable the development of therapies optimally designed 
for genetically defined cohorts of patients, a key driver for 
the present practice of personalized medicine. Success has 

been demonstrated by a number of drugs (e.g., Kalydeco, 
crizotinib, vemurafinib, dabrafenib, tremetinib) approved in 
conjunction with genetic-based companion diagnostics.34

Nevertheless, it became clear that both for disorders that 
are primarily monogenic but especially for complex dis-
eases, merely identifying the defective genes involved is 
not sufficient. It is also necessary to determine the func-
tional interrelationships among these genes and their prod-
ucts, including epigenetic modifications, and to understand 
the biological underpinnings that result in the 
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Figure 2.  Basic steps in phenotypic drug discovery and development. The basic phenotypic approach involves steps that begin 
with the biology of the disease. Although a holistic approach to the disease has not usually been applied at this point, additional 
information has been gleaned from patient data and network analyses as part of basic scientific information. The next steps include 
the identification (ID), recapitulation, and validation of a disease-relevant phenotype in cell-based and/or organism-based models. The 
next step involves the development of a phenotypic assay that can be one of two major types: (1) unbiased modulation of a specific 
pathway identified in the validation step3 or (2) an unbiased modulation of a disease phenotype that may involve any or multiple 
pathways in which the goal is to modulate the disease phenotype to a more normal phenotype4 followed by screening of selected 
libraries and then the generation of leads from the validated hits.5,6 The next step involves the optimization of leads and, increasingly, 
the application of early safety and absorption, distribution, metabolism, and excretion testing in vitro followed by the use of methods 
such as chemical proteomics and RNAi knockdowns to identify on-target and off-target interactions of the leads. If molecular targets 
are identified during target ID studies, it is possible to shift to the target-centric approach for structure-activity relationship. The next 
step involves preclinical testing with animal models followed by phase I to III clinical trials.

Table 1.  Quantitative systems pharmacology platform overview..

Intrinsic Characteristics Impact

Modular integration of fundamental principles from  
pharmacology and systems biology

Quantitative, network-centric, mechanistic understanding of biology 
underlying disease progression

Iterative use of experimental and computational models Biomarkers and drug-target interactions mechanistically linked to 
disease-specific mechanisms of progression

  Anticipation of resistance mechanisms, drug-drug interactions, and 
off-target activity

Integration of data from unbiased, biased, and published 
studies

Increased opportunity for repurposing drugs, minimizing toxicity, and 
pursuing optimal targets

Integration of data across multiple spatial and temporal 
scales

Preclinical models account for heterogeneity, complex cellular 
context, and multicellular interactions

Based on patient data Improved patient stratification and efficiency for demonstrating proof 
of concept in appropriately defined patient cohorts in phase II and 
III trials

  Continued progress toward personalized v. population medicine
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disease phenotype.35 Traditional drug discovery approaches 
predicated on the “one-gene, one-target, one-mechanism” 
hypothesis have been inefficient in developing therapeu-
tics.7–9 Therefore, it would be valuable to explore the appli-
cation of comprehensive, unbiased strategies such as QSP 
that are intrinsically network centric and that can integrate, 
analyze, and validate large, complex data sets with state-of-
the-art computational and experimental technologies to 
more fully understand the disease biology. It is feasible to 
apply QSP thanks to advances in molecular-to-cellular anal-
yses, algorithmic developments, and increased computa-
tional power.20,36–40 The technical approaches and the 
application to drug discovery and development are rapidly 
developing.

Here, we present the rationale for a drug discovery strat-
egy and platform based on our definition of QSP. Components 
of the proposed platform (Fig. 3) have been and are being 
applied in the standard drug discovery approaches, including 
in target-centric and phenotypic approaches (Figs. 1 and 2). 
Our innovation is the design and implementation of a QSP 
platform focused on the integrated and iterative feedback 
from quantitative experiments with computational tools that 
are part of a continuum with the practice of personalized 
medicine (Fig. 3; Table 2).11,12,21,41,42

As summarized in Table 2 (which supports Fig. 3), the 
QSP platform is capable of addressing the inherent hetero-
geneity of genotypes and phenotypes in populations of 
patients with the same disease and identifying distinct treat-
ments for each subpopulation.34 Implementing the QSP 
platform requires teamwork among investigators spanning 
the fields of clinical medicine, genetics, molecular biology, 
medicinal chemistry, pharmacology, ADME-TOX, compu-
tational biology and chemistry, systems biology, engineer-
ing, mathematics, and bioinformatics.

QSP and personalized medicine share a focus on the 
patient at both the start and end point (step A in Fig. 3 and 
Table 2). Personalized medicine currently uses patient data, 
including standard clinical tests as well as a growing list of 
“omics” analyses obtained from tissue samples, to select the 
optimum treatment from existing options. Advances in lon-
gitudinal patient sampling (e.g., liquid biopsies for circulat-
ing tumor-derived DNA18 and circulating tumor cells73 have 
enabled the monitoring of disease progression. QSP works 
to expand the existing options for therapies through a com-
bination of an iterative cycle of experimental and computa-
tional analyses aimed at identifying disease-specific 
emergent properties, such as new therapeutic strategies, 
pharmacodynamic biomarkers, and prognostic and predic-
tive biomarkers (Fig. 3, steps A–K; Table 2).

The process can be initiated at any step, depending on 
the availability of validated data for prior steps, with the 
goal of extracting and integrating information from each 
step to inform subsequent experimental and computational 
design and analyses steps in the iterative cycle. The ultimate 

step is the return to the patients with innovative clinical trial 
designs and verification of their effectiveness (step L).

Systems-Level Approach Needed for a 
Mechanistic Understanding of Disease 
Phenotypes

For several genetically well-defined (i.e., Mendelian) dis-
eases in which the criteria for causality are akin to Koch’s 
postulates having been satisfied,35 the successful develop-
ment of therapies has often depended on a detailed mecha-
nistic knowledge of how particular genotypes give rise to 
disease phenotypes. In Marfan syndrome, for example, the 
identification of fibrillin-1 mutations74 per se was insuffi-
cient to identify therapies without the concomitant under-
standing of the pathophysiology.75,76 In a series of elegant 
studies employing Marfan syndrome mouse models that 
recapitulate many of the clinical manifestations of the dis-
ease,76 including a predisposition for aortic aneurysm, 
angiotensin II–dependent canonical and noncanonical 
transforming growth factor (TGF)–β signaling was shown 
to be the responsible pathway for this disorder.77–79 Selective 
blockade of the angiotensin II type 1 receptor, although 
sparing angiotensin II type 2 signaling, led to the successful 
repurposing of the antihypertensive losartan for this indica-
tion.76 Such a network-centric approach implemented in 
conjunction with clinically relevant models is intrinsic to 
QSP (Fig. 3; Table 2). Because diseases often share path-
ways linked to their progression, as suggested by the preva-
lence of comorbidities,80 we posit that a network-centric 
QSP approach for understanding pathophysiology will 
likely identify more opportunities for drug repurposing, in 
addition to guiding the development of novel therapeutics.

Akin to Marfan syndrome, the genetic defect leading to 
Huntington’s disease (HD) has been known for more than 
20 y (i.e., expanded CAG repeats in the HTT gene, which 
leads to aggregate-prone extended polyglutamine stretches 
in the protein product huntingtin). But the function of HTT 
and the biology of disease progression remain poorly under-
stood. Mutant huntingtin expression is difficult to modulate 
directly with small molecules, displays pleiotropic gains of 
function,81 and induces neuronal subtype–selective cell 
death, with striatal medium spiny neurons being the most 
vulnerable. As part of a QSP approach to identifying the 
pathogenic pathways,82 knock-in models that recapitulate 
several clinical features of HD have identified several dys-
regulated pathways (e.g., cadherin, TGF-β, and caspase sig-
naling) that are also evident in patient postmortem tissue. 
Transcriptome analysis shows that these same pathways are 
also dysregulated in medium spiny neurons differentiated 
from induced pluripotent stem cells (iPSCs) derived from 
HD patients but not from normal individuals. However, 
when the HTT mutation is corrected by homologous 
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Table 2.  Quantitative systems pharmacology platform for drug discovery and the advancement of personalized medicine being 
implemented at the University of Pittsburgh Drug Discovery Institute.a

Step A The inputs are a wide range of patient-specific clinical and “omics” data, the outputs are a distribution of patient genotypes 
and phenotypes, and the intuition is that more detailed patient data will better stratify patients. The current status of 
personalized medicine involves using clinical and biospecimen data to select the optimal treatment strategy for each 
patient from existing options. Our implementation of QSP as a joint platform for drug discovery and the extension of 
personalized medicine begins with a focus on the patient from whom we obtain biospecimens and data (longitudinal 
samples where possible) that are analyzed by a range of analytics, including DNA sequencing, transcriptomics, epigenetics, 
proteomics, metabolomics, and/or computational pathology.16,17,35,38,39,43 In addition, the availability of validated target 
knowledge should be combined with the unbiased analyses of the patient data.

Step B The inputs are a comprehensive set of “omics” from patients that represent the range of disease genotypes and phenotypes, the 
outputs are inferred pathways of disease progression that contain a collection of potential molecular targets, and the intuition 
is the focus on the inferred pathways that will define the initial starting point for understanding the mechanism(s) of disease 
progression and what pathway(s) to modulate to correct the disease phenotype. Computational biology tools are used to infer 
pathway(s) of disease progression in an unbiased approach using either individual or population patient data.16,17 The inferred 
pathways yield lists of potential molecular targets for therapeutic intervention.

Step C The input is a prioritized list of potential drug targets identified from the inferred pathways in step B, the output is a 
prioritized list of predicted drug-target interactions, and the intuition is that the predicted drugs can then be tested as 
probes in the phenotypic models of the disease created in step D that could yield valuable mechanistic clues. Machine-
learning software tools predict molecular drug-target interactions from the potential molecular targets in the inferred 
pathways by analyzing databases such as DrugBank and STITCH.36,44–47

Step D The input is a set of requirements for phenotypic models of disease progression (and reversal, with treatment) that closely 
reflect the patient-derived information, including heterogeneity, using engineered organisms (e.g., Caenorhabditis elegans, 
zebrafish), human isogenic cell lines, and induced pluripotent stem cell–derived cells in plate-based48 and microfluidic 
three-dimensional models.49–51 Focused compound libraries, RNAi knockdowns, and mutant cDNA libraries are tools 
both for uncovering mechanism(s) and as a starting point for identifying novel leads. The output is a robust, in vitro 
phenotypic model of the disease at a specific stage of the disease progression, and the intuition is that the use of more 
sophisticated experimental models of disease that reflects patient heterogeneity will be more valuable than simple assays.

Step E The input is the disease-specific phenotypic model, and the outputs are HCS image data that are analyzed on a cell-by-
cell basis to characterize subpopulations, including the presence and extent of heterogeneity of response to small 
molecules,52 RNAi,53,54 and mutant cDNA55 (see also refs. 56–60), that include hits from screening with predicted drugs 
from step C and novel compounds. Multiplexed HCS assays measure multiple functional parameters61 against selected 
probes. The intuition is that modulating pathways in phenotypic models of disease progression will yield a systems 
response potentially involving multiple pathways.

Step F Hits from HCS profiling demonstrate an ability to reverse the disease model phenotype62,63 and can serve as the starting 
point for drug repurposing when the predicted drugs show positive results and/or development of novel therapeutics 
from the focused compound libraries.

Step G Medicinal chemistry can then be used to optimize any predicted drug hits for the new indication and hits from the focused 
compound libraries (see step I).

Step H Lead compounds are tested in mammalian disease models to validate the potential efficacy and safety in a multiscale system 
relative to the molecular, cellular, and tissue experimental models.

Step I Lead compounds also undergo target identification using a combination of approaches, including chemical proteomics 
analyses to identify proteins that bind the “hits” and represent potential molecular targets.64–68 The highest probability 
proteins identified by chemical proteomics are then mapped into the inferred pathways of disease progression (step 
B) or new pathways that are subsequently validated using RNAi, knockdown models, and/or highly selective small-
molecule probes. Successful target(s) ID in this step enables a shift to target-centric development with the use of the 
molecular targets in structure-activity relationship studies. However, optimized molecules also need to be positive in 
the phenotypic disease model profiling (step E). The heterogeneity analysis needs to be continued during optimization to 
identify any variation in potency and heterogeneity that would identify subpopulations of responders.56

Step J Computational (mathematical) models of disease physiology and progression are created by integrating phenotypic disease 
model data with validated, published knowledge.6,69–72 The initial computational models are incomplete, but the iterative 
steps in the QSP platform process allow experimental disease models (step D) to be tested and further manipulated with 
small-molecule, RNAi, and mutant cDNA libraries. The new data from steps E through I can then be incorporated into 
the next version of the computational model in a gradual process of improvement of the model.

Step K An iterative process of experimentation and computational modeling converges on comprehensive characterization of disease 
progression with increasing accuracy. The iterative process identifies disease-specific emergent properties including the 
identification of a novel therapeutic strategy, pharmacodynamic biomarkers, and prognostic and predictive biomarkers.

Step L The preclinical and in silico knowledge gained through these iterative steps guides clinical trial design, in which the trial 
itself now becomes an integral module of the iterative QSP cycle, generating additional patient data to further refine 
our understanding of the underlying pathophysiology and our design of next-generation therapies. Repurposing of drugs 
predicted in step C and tested in step E is naturally simpler for entering into clinical trials v. novel compounds.

aThis table is in support of Figure 3. QSP = quantitative systems pharmacology; HCS = high-content screening; ID = identification.
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recombination, the signaling of these dysregulated path-
ways is normalized, and the disease phenotype (i.e., suscep-
tibility to stress-induced cell death) is rescued.82

Once dysfunctional pathways have been inferred from the 
systems-level analysis, as in the examples above (step B in 
Fig. 3 and Table 2), the next step in the QSP platform is to 
distinguish those that are mechanistically linked to disease pro-
gression (i.e., pathogenic) from other dysregulated pathways 
that may represent an epiphenomenon or a disease-ameliorat-
ing compensatory effect.83 To accomplish this task, iterative 
use of experimental and computational approaches is essential 
(steps B–J). The goal is to modulate and quantitatively assess 
how individual pathways affect disease phenotype. High-
content profiling that includes analysis of heterogeneity of cel-
lular responses can then help us determine the role of a 
particular pathway in the pathophysiology (step E).56 However, 
drug-induced normalization of a single pathway may not be 
sufficient to rescue disease phenotype. Specific proteomic, 
transcriptomic, and metabolomic data84,85 can then be analyzed 

and integrated using computational and pharmacodynamic 
systems analysis tools86 to construct mathematical (computa-
tional) models of pathogenic pathways and their interrelation-
ships (networks; Step J).69–71 This information is in turn used 
for predicting optimal drug combinations and companion bio-
markers86 (step K) that can then be experimentally validated 
(or invalidated) and further refined through additional itera-
tions of the QSP cycle prior to clinical trial design.

QSP-Driven Phenotypic Approaches 
to Drug Discovery in Complex Disease

The great challenge for drug discovery in complex diseases 
relates to their variations at often hundreds of gene loci, phe-
notypic heterogeneity, and multifactorial patterns of inheri-
tance. Variants at any component locus may not be necessary 
or sufficient to result in the disease phenotype, and they may 
be relatively common in healthy individuals and occur in 
noncoding regions. The pathogenic consequences of variants 
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Figure 3.  Quantitative systems pharmacology platform for drug discovery and the advancement of personalized medicine being 
implemented at the University of Pittsburgh Drug Discovery Institute. Details are outlined in Table 2.
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depend on cellular and organ context, functional interactions 
with other gene variants and their products, and associated 
environmental factors. For example, mutations within the 
cystic fibrosis transmembrane conductance regulator (CFTR) 
that disrupt anion channel activity affect epithelial cell func-
tion in the lungs, pancreas, and other tissues as part of the 
cystic fibrosis (CF) phenotype. Indeed, Ivacaftor, identified 
through phenotypic discovery, was recently approved by the 
Food and Drug Administration (FDA) as the first drug to 
directly target any of 10 rare mutations that disrupt the chlo-
ride ion channel function of CFTR.87–89 However, CFTR 
mutations that disrupt bicarbonate anion channel activity but 
spare chloride anion channel activity predispose individuals 
to chronic pancreatitis but not pulmonary dysfunction.90,91 
The risk of chronic pancreatitis increases further with the 
coinheritance of pancreatic secretory trypsin inhibitor vari-
ants, which multiplicatively increases the risk of chronic pan-
creatitis (without CF), suggesting gene (product)–gene 
(product) interactions and a corresponding high-risk path-
way.91 These particular observations with chronic pancreati-
tis appear to be generalizable to other complex diseases. 
Probabilistic genetic modeling indicates that gene-gene inter-
actions, especially among common variants underlying 
Mendelian disorders, appear to make major contributions to 
complex disease risk and as such are significant determinants 
of disease phenotype.80

Thus, focusing on disease phenotype may represent a 
complementary strategy to individual gene (or protein) tar-
geting. Several reviews reinforce the value of phenotypic 
screens and their success relative to target-focused 
approaches, particularly for complex disease.1,2,5,6,56,57,92 In 
particular, high-content screening (HCS) is a powerful phe-
notypic screening tool for analyzing the temporal-spatial 
dynamics of multiple cellular function parameters in both 
cell-based56,61,93 and experimental organism94 models. As an 
example, HCS conducted on a genome-wide scale using 
RNAi or cDNA overexpression combined with in silico 
drug-target discovery strategies has been used to repurpose 
preclinical drugs for both common and rare diseases, such 
as alpha1-antitrypsin deficiency and acute megakaryocytic 
leukemia (AMKL).62,63

In the case of AMKL,62 the disease phenotype is well 
known (immature megakaryocytes cannot exit from a highly 
proliferative cycle to achieve polyploidization and platelet 
differentiation), but the genomic data per se were not suffi-
cient to focus on a small set of candidate pathways or targets. 
Thus, the QSP cycle was initiated at step D with HCS profil-
ing (Fig. 3; Table 2) using small-molecule chemical probes 
and comprehensive RNAi libraries in a cell line derived from 
a patient AMKL blast to identify mechanisms of AMKL pro-
gression. Dimethyl fasudil was identified as a rare hit that 
selectively induced both polyploidization and other markers 
indicative of platelet differentiation in megakaryocytes but 
not in cells from other lineages (step F). This kinase inhibitor 

demonstrated efficacy in a murine AMKL model that directly 
correlated with its in vivo induction of polyploidization in 
tumor cells (step H).

Next, chemical proteomics and kinase and kinome-
shRNA screening (step I in Fig. 3 and Table 2) identified 
the mechanistic target of dimethyl fasudil as Aurora kinase 
A (AURKA), both a negative regulator of endomitosis and 
platelet differentiation and a targetable AMKL dependency 
(step K). This finding was corroborated in vivo (step H) 
both genetically (AURKA knock-out animals) and pharma-
cologically using Alisertib, an Aurora kinase A inhibitor 
under clinical development for other oncology indications.

Thus, a QSP-driven, mechanism-focused, phenotypic 
approach led to the repurposing of Alisertib for the novel 
differentiation-inducing treatment of AMKL (ongoing clin-
ical trial). Computational modeling in the same study (step 
J in Fig. 3 and Table 2) led to insights regarding five kinase 
pathways that regulate endomitosis and could suggest addi-
tional experiments designed to inform the rational design 
and testing of combination therapies, at which point a sub-
sequent QSP cycle would commence at steps B and C. 
Indeed, the mechanistic studies that have led to an AMKL 
indication for Alisertib have now been extended to patients 
with another megakaryocyte-based neoplasm, primary 
myelofibrosis, with the prospect of implementing combina-
tion therapeutic strategies involving the Janus kinase inhibi-
tor, ruxolitinib.95

QSP as a Means to Address Resistance 
to Targeted Cancer Therapy

A promising application of QSP is in the development of 
precision cancer therapy designed to achieve sustainable 
remission.96,97 Functional genomic analyses of tumor muta-
tions can identify targetable tumor dependencies (e.g., 
BCR-ABL, EGFR, BRAF) that guide the selection of inhib-
itors capable of improving progression-free survival with-
out the side effects of traditional chemotherapy. However, 
resistance emerges through the clonal evolution of tumor 
cells with mutations that escape the initial selective inhibi-
tor. Maximizing treatment response requires the a priori 
rational combination of synergistic therapies96,98 in antici-
pation of the mechanisms of resistance likely to emerge.97 
This can be accomplished through iterative use of the QSP 
cycle, starting at step A to identify the patient genotypes and 
phenotypes that can be engineered into phenotypic models 
(step D), to identify those pathways with the potential to 
confer resistance. For example, mutant cDNAs representing 
core nodes in 17 pathways that are frequently implicated in 
cancer cell proliferation, survival, differentiation, and cell 
death can be expressed to activate or inhibit their respective 
pathway.55 Pathways conferring resistance to particular 
drugs were identified using these cDNAs, and when these 
resistance-conferring pathways were themselves inhibited 
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with a second drug, sensitivity to the original targeted drug 
was restored, thereby suggesting a potential polypharmaco-
logic strategy for addressing resistance. Mechanisms of 
resistance involved either the activation of a compensatory 
pathway to bypass the one inhibited by the drug or the acti-
vation of pathways that alter the cell state to be less depen-
dent on the drug-targeted pathway for viability.55

Secondary mutation of the target itself represents another 
important strategy for the tumor to reactivate the oncogenic 
signaling pathway in the presence of a drug. These mutations 
confer resistance by several possible mechanisms, such as 
direct or allosteric prevention of drug-target interaction, 
enhanced binding of a competitive substrate, or the conversion 
of a receptor antagonist to an agonist.97 Examples include 
BCR-ABL mutations that confer imatinib resistance in chronic 
myeloid leukemia99 and the F876L mutation in the androgen 
receptor that confers resistance to enzalutamide for the treat-
ment of castration-resistant prostate cancer.100,101 A holistic 
QSP approach can take into account the emergence of resis-
tance, including its molecular mechanisms,102 at the outset of a 
drug development program and thus inform the design of poly-
pharmacologic strategies that effectively trap emerging resis-
tance to enable more sustainable remission and cure rates.

Using QSP to Address Heterogeneity 
in Drug Discovery and Development

Because heterogeneity can be the product of genetic and/or 
nongenetic processes,57,103 disease genotypes and phenotypes 
can vary within (intratumor) and between (intertumor) experi-
mental models and individual patients, confounding our ability 
to develop optimal therapeutics and diagnostics.42,52,58,59,98,104–107 
The QSP cycle addresses heterogeneity from the analysis of 
patient samples (step A in Fig. 3 and Table 2) through the 
development of mathematical models (step J). For example, 
the application of HCS to a phenotypic model of HD using 
patient-derived iPSCs demonstrated the ability of correcting 
the mutant HTT gene with homologous recombination to 
reverse cell death in response to stress.82 In the future, iPSCs 
could be modulated with molecular and/or small-molecule 
perturbations to identify and quantify any heterogeneity in 
patient-specific disease models.56

In cancer, spatial relationships between tumor and stromal 
cells add another layer of heterogeneity. Spatial heterogene-
ities underscore the importance of capturing data within the 
context of cellular and tissue architecture that is otherwise lost 
through population-averaged methods.57 The QSP platform 
takes advantage of new computational pathology methods that 
use panels of multiplexed fluorescent biomarkers to quantify 
single-cell intratumor heterogeneity while preserving spatial 
relationships within the tumor.43,57,108,109 In addition, single-cell 
proteomics from mass spectrometry imaging can likewise be 
incorporated into pathway models,110 as can data from cell-
based assays in microplates,56 kinetic HCS measurements in 

single living cells,16 and single-cell genetic analyses.111 HCS of 
disease-specific samples (e.g., patient biopsies, patient-derived 
iPSCs, patient-derived xenograft [PDX] tissue, tissue-
engineered models) can define and quantify the heterogeneity 
for use in the development of both therapeutics43,56,108 and 
more biologically relevant experimental, phenotypic models 
of disease.48,49

The QSP process also takes into account nongenetic 
sources of heterogeneity. Although many diseases have 
some genetic component, most have environmental or sto-
chastic components, as long demonstrated by twin stud-
ies.112,113 Through its integrated computational modeling, 
QSP can help address environmental and epigenetic influ-
ences on health and disease. If particular environmental 
exposures are suspected as contributing to a disease pheno-
type, the QSP framework has the potential to test these 
associations and to probe interactions between particular 
genetic variations and environmental factors.

Computational Approaches within the 
QSP-Driven Drug Discovery Process

Computational analyses of complex data sets and computa-
tional modeling are central to the effectiveness of the QSP plat-
form.21,69,114 Computations serve three major functions: (1) 
data integration with a variety of inference analytics, (2) pre-
dictions of drug-target and drug-drug interactions, and (3) pre-
dictive, computational modeling of the networks involved in 
the disease progression (see Fig. 3 and Table 2, steps B, C, I, 
and J). The first set of computational tasks requires the integra-
tion of distinct data types (e.g., “omics,” image, clinical, and 
pharmacologic data) into a unified model. The inherent hetero-
geneity of the samples and the distinct data types, which may 
include genomics, transcriptomics, proteomics, epigenetics, 
computational pathology, metabolomics, and/or lipidomics, is 
still a challenge, but advanced machine-learning algorithms 
with mixed graphical models are being developed to address 
this challenge.17,20,35,37–39,115,116

The inference of pathways involved in disease progres-
sion based on the patient “omics” data from step A is the 
next task using algorithms16,17 that are continually being 
improved (step B in Fig. 3 and Table 2). Network-based 
approaches to human medicine are particularly useful for 
assessing the significance of disease-associated mutations 
identified by genome-wide association studies mentioned 
above, building on the wealth of theory and methods that 
have been developed for network models in general.37 We 
note in particular the development of a new disease-mod-
ule–detection algorithm by Barabasi and coworkers,117 
inspired by the observations that disease-associated pro-
teins interact with each other. For example, the application 
of network models to asthma proved to be particularly use-
ful in explaining disease heterogeneity and capturing novel 
pathways.118
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The prediction of approved drugs as probes of the poten-
tial molecular targets within the inferred pathways is the 
next computational task (step C). Computational methods 
for predicting unknown drug-target associations have been 
explored for a number of years, particularly for repurposing 
drugs for additional indications and identifying potential 
off-target effects.36,44–46,119,120 For example, the probabilistic 
matrix factorization approach is scalable to large databases 
such as STITCH and available as a web-based tool applied 
to DrugBank.47

In addition, valuable transcriptional drug treatment data-
bases including CMap121 and LINCS122 have searchable 
measurement data for a variety of experimental manipula-
tions using multiple cell types, approved drugs, drug doses, 
and time points that are publically available. These and other 
databases have been used to connect genes, drugs, and dis-
eases through changes in gene expression.123 Approved drugs 
demonstrated to be effective in one disease can serve as can-
didates for other diseases exhibiting the same changes in 
gene expression.124,125 The mining of these types of publi-
cally available data sets complements the design and imple-
mentation of steps B through D in Figure 3 and Table 2.

Computational modeling of disease progression networks 
(step J) starts with creating mathematical models that are 
consistent with published biological knowledge of the molec-
ular and cellular mechanisms6,69–71,115 (steps A and B) as well 
as experimental data generated through steps C though I. The 
computational models make predictions that can be tested 
experimentally, and the model can be improved in an itera-
tive process. New inferences may then be formulated as 
experimentally testable hypotheses. A key feature of the QSP 
platform is the experimental validation (or invalidation) of 
these hypotheses, which then provide feedback and new data 
to be incorporated into computational models to further 
improve their predictive ability. Rule-based languages for 
modeling,69–71 such as BioNetGen,72 approach model design 
with mathematical definitions. Computational models that 
incorporate HCS data are being developed to address net-
work complexity, cellular heterogeneity, spatial complexity, 
and multicellular systems56,57 in parallel with advances in 
causal model discovery.126 The iterative process used in the 
platform is essential to learning about underlying mecha-
nisms and designing specific therapies.

QSP and Personalized Medicine Form 
a Continuum

Because of its comprehensive capabilities and flexibility, 
the QSP platform will play a critical role as we move medi-
cine from a reactive to a proactive process,22,23 particularly 
with the increasing penetration of DNA sequencing in the 
clinic.127 The future routine collection of “omics” data in 
the clinic, including transcriptomics, epigenomics, metabo-
lomics, proteomics, and computational pathology (step A in 

Fig. 3 and Table 2), will further enable an unbiased 
approach to inferring pathways of disease progression as a 
starting point for developing personalized therapeutics and 
their personalized companion diagnostics (step B). In par-
ticular, the QSP platform will facilitate the identification of 
pharmacodynamic, diagnostic, prognostic, and predictive 
biomarkers (step K). All of this information along with 
pharmacogenomic analysis will then contribute to the effi-
cient design, simulation, and implementation of clinical tri-
als (step L) that permit a focus on personalized rather than 
population-based medicine. The NCI-MATCH (Molecular 
Analysis for Therapy Choice) trial128 is an initiative in that 
direction, which includes patients with any solid tumor or 
lymphoma who have one of many genomic abnormalities 
known to drive cancer. The goal for the QSP-personalized 
medicine continuum is to expand the options available at 
step A and to be there to develop new options as diagnostic 
and therapeutic needs are identified.

Challenges Exist in the 
Implementation of QSP for 
Developing Therapeutics and 
Advancing Personalized Medicine

The implementation of the QSP strategy and platform has 
been initiated to optimize the understanding of the mecha-
nisms of disease progression at the level of preclinical test-
ing before investing in expensive clinical trials where 
failures have been a major problem. However, there are 
ongoing challenges to fully develop and implement the 
computational and experimental methods, although the ref-
erences listed in Table 2 and the body of this perspective 
demonstrate a good starting point. It is clear that the optimal 
implementation of QSP will be an evolutionary process. 
Furthermore, the training of scientists, engineers, and com-
putational and systems biologists must evolve to support 
the new approach to developing therapeutics.

Some of the computational challenges include the need to 
improve the methods used to integrate diverse patient data 
types, to optimally harness “big data” generated from a grow-
ing number of high-throughput “omics” that require sophisti-
cated data storage, analysis, archiving, visualization, and 
causal discovery. In addition, the development of useful com-
putational models of networks involved in disease progression 
requires formalizing complex disease processes order to gen-
erate hypotheses that can be experimentally tested. Advances 
in the mathematical methods and systems biology tools, 
including the capture of heterogeneity in the network struc-
tures, need to be developed to fully capture the complexity of 
the biology.

Challenges also exist for the experimental approaches 
outlined in our strategy and platform. There is a need for a 
new focus on developing sophisticated phenotypic models 
that are more disease relevant. This will involve accepting a 
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slightly lower throughput for phenotypic screening, as well 
as investing in the use of multicell, three-dimensional, 
human cell–based models, including the use of patient-
derived, iPSCs and/or primary patient samples. This is a 
departure from the traditional approach of optimizing 
throughput relative to disease relevance. The best experi-
mental models will also involve temporal analyses of live 
samples to gain dynamic information. The present genera-
tion of disease-relevant models is useful, but further 
advancements are needed, including developing standard 
plates and/or chips that provide physiological flow for the 
models with the maximal possible throughput. Finally, the 
application of chemical proteomics as part of the approach 
to identify the molecular targets from phenotypic profiles is 
powerful, yet still evolving. Validation studies are still 
ongoing to demonstrate the strengths and weaknesses of the 
approach.

Moving Forward with QSP and 
Personalized Medicine

We believe the time has arrived for QSP to become the key 
approach to determine the biology underlying disease pro-
gression and to support the advancement of personalized 
medicine. Various specific platforms such as the one outlined 
here are possible, and further innovation is important.129 Yet 
the comprehensive unbiased approach, however practiced, 
has the potential to do more than identify a relatively small 
set of candidate drug targets that are merely associated with a 
particular disease: it allows for the informed selection of drug 
targets and biomarkers mechanistically linked to the patho-
physiology. The QSP process also supports improved patient 
stratification and more quantitative predictions regarding the 
pharmacologic effects of particular drug-target interactions 
and thus increases the efficiency of demonstrating proof of 
concept in clinical trials. Each component of the QSP cycle 
has its own role in the drug discovery process, and their 
seamless integration is required for the identification of 
emergent, disease-specific properties. For example, compu-
tationally inferring pathways of disease progression (step B 
in Fig. 3 and Table 2) is facilitated by the analysis of multiple 
spatially and temporally distinct samples from an individual 
patient both to account for heterogeneity and to associate 
these pathway data with clinical observations and treatment 
outcomes over time (step A).

The priority now is to aggregate and disseminate available 
toolkits of experimental and computational methods that can 
comprehensively analyze data and specifically model and 
modulate the pathways of disease progression for any disease. 
Such libraries of toolkits would be used to determine the path-
way and network dependencies for specific disease pheno-
types (steps D, E, H, J), validating computationally derived 
pathway analyses and distinguishing these from epiphenom-
ena (e.g., driver mutations from passenger mutations). The 

development and implementation of standardized experimen-
tal and computational tools will require strong organizational 
leadership among academia, industry, and government spon-
sors and regulatory agencies to establish a culture of multidis-
ciplinary team building across institutions. We believe that 
recognition of the value of QSP for drug discovery and the 
development for personalized medicine will motivate the 
adoption and implementation of this paradigm.
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