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Abstract
Two technologies that have emerged in the last decade offer a new paradigm for
modern pharmacology, as well as drug discovery and development. Quantitative
systems pharmacology (QSP) is a complementary approach to traditional, target-
centric pharmacology and drug discovery and is based on an iterative application
of computational and systems biology methods with multiscale experimental
methods, both of which include models of ADME-Tox and disease. QSP has
emerged as a new approach due to the low efficiency of success in developing
therapeutics based on the existing target-centric paradigm. Likewise, human
microphysiology systems (MPS) are experimental models complementary to
existing animal models and are based on the use of human primary cells, adult
stem cells, and/or induced pluripotent stem cells (iPSCs) to mimic human tissues
and organ functions/structures involved in disease and ADME-Tox. Human MPS
experimental models have been developed to address the relatively low concor-
dance of human disease and ADME-Tox with engineered, experimental animal
models of disease. The integration of the QSP paradigm with the use of human
MPS has the potential to enhance the process of drug discovery and development.

Keywords
Computational models of ADME-Tox · Computational models of disease · DILI ·
Drug development · Drug discovery · Drug repurposing · Induced pluripotent
stem cells · Microphysiology systems · Omics analyses · PBPK · Personalized
medicine · Quantitative systems pharmacology · Toxicology

1 Introduction

Over the last 30 years, the primary drug discovery and development paradigm has
been based on target-centric discovery methods and the use of simple 2D cellular
models along with animal models of disease and ADME-Tox (Sorger et al. 2011;
Stern et al. 2016). Although some very valuable therapeutics have been discovered
and delivered to patients based on this paradigm, the efficiency has been very low. In
fact, after the investment of significant time and money, the failure rate is still
ca. 80% for those new drug candidates that enter phase 2 clinical trials (Arrowsmith
and Miller 2013), although in recent years there has been some improvement
concurrent with an increase in the percentage of biologics and a more critical triage
of candidates (Smietana et al. 2016). The primary causes of failure have been
identified as a lack of efficacy with some unpredicted toxicity (Alex et al. 2015;
Arrowsmith and Miller 2013). This knowledge has led to a widely held view that
there is need for a new paradigm, together with the use of more sophisticated human
multicellular, 3D experimental tissue/organ models (Sorger et al. 2011; Stern et al.
2016). This chapter explores the application of QSP as an alternative approach to
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drug discovery and development and the role of human MPS (e.g., organs-on-a-
chip) to complement animal models of disease and ADME-Tox in the practice
of QSP.

1.1 Quantitative Systems Pharmacology

The identification of small molecules that modulate disease-relevant animal pheno-
typic models, which can then serve both as probes of pathophysiology and starting
points for drug discovery and development, has its roots in classical pharmacology
(Sorger et al. 2011). Historically, the structure-activity profiles of these small
molecules were used to classify receptors, infer their biological functions, and then
guide their molecular characterization (i.e., “target identification”) (Ahlquist 1948;
Black et al. 1972; Lands et al. 1967; Sorger et al. 2011). Recent technological
advancements including genomics and high-content screening (phenotypic screen-
ing) have resulted in the development of more sophisticated experimental models
(human cells, human 3D, MPS models, and small organisms) exhibiting quantifi-
able, clinically relevant features (phenotypes) (Haasen et al. 2017; Horvath et al.
2016; Taylor 2012). Phenotypic discovery has been enabled with more extensive
structurally and mechanistically diverse chemical libraries (https://drugdiscovery.
msu.edu/facilities/addrc/compound-libraries/) and orthogonal methods that facilitate
target identification of phenotypic screening “hits” (Mateus et al. 2016; Schenone
et al. 2013). Juxtaposed to classical pharmacology, recent pharmacology has
evolved an alternative reductionist approach, exploiting phenotypic screening,
extensive datasets, chemical libraries, and antibody collections, to identify small
molecules and biologics that directly target well-annotated receptors to effect spe-
cific biological responses (Sorger et al. 2011).

Phenotypic and target-centric pharmacological approaches are complementary,
can be used in tandem, and have resulted in the approval of nearly 4,000 drugs
having a profound benefit on human health worldwide. The reduction in mortality
among a large segment of our population, through the pharmacological management
of cardiovascular risk factors, and the modification of the lethal HIV infection into a
clinically manageable chronic disease through combination therapy targeting the
virus life cycle are two remarkable examples among many. Despite this success,
diseases range widely in their complexity and prevalence, from cancers, opioid
addiction, Alzheimer’s disease, type 2 diabetes, and nonalcoholic fatty liver disease
(NAFLD) to the more than 7,000 rare diseases for which there are no effective
treatments. To address this extensive unmet need, the field of pharmacology
continues to evolve, incorporating an explosion of knowledge and unprecedented
advances in technology in this post-genomic era, into a modular, highly integrated
platform termed quantitative systems pharmacology (QSP) (Gadkar et al. 2016a;
Hansen and Iyengar 2013; Iyengar et al. 2012; Sorger et al. 2011; Stern et al. 2016;
Zhao and Iyengar 2012).

QSP focuses on determining disease mechanisms and drug modes of action and
their intrinsic relationships, to facilitate the repurposing of existing drugs, as well as
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to develop novel therapeutics and therapeutic strategies. Discovering and developing
therapeutics is a multiscale challenge. QSP addresses this challenge through the
iterative use of experimental and computational models, starting with analysis of
human clinical data and continuing with the analysis of molecular results from
in vitro experimental and animal models relative to the human data.

Historically, advancements in the development of preclinical human models of
barrier epithelia, coupled with the development of mathematical models of pharma-
cokinetics, improved our ability to predict human pharmacokinetic (PK) profiles,
optimizing compound and dose selection for early stages of clinical development
(Ferreira and Andricopulo 2019; Kola and Landis 2004; Sorger et al. 2011; Torras
et al. 2018). The combined use of human, cell-based experimental models and
computational models of physiologically based pharmacokinetics (PBPK) paved
the way for overcoming a major hurdle in traditional drug development (Lave
et al. 2016; Rowland et al. 2011). Addressing this particular challenge has neverthe-
less unmasked others. Today, attrition in the drug discovery pipeline results mainly
from lack of efficacy in phase 2, as well as toxicity that can be observed at any stage
of development including post-market surveillance (phase 4). A lack of efficacy can
be observed despite evidence for drug-target engagement and that toxicity has often
been determined to be on-mechanism, suggesting that medicinal chemistry per se is
not limiting drug development, but that our knowledge of underlying human
biological mechanisms and pathophysiology is insufficient.

Paradoxically, it appears that for complex diseases a phenotypic approach may
be particularly useful in combination with elements of the target-based approach
(Haasen et al. 2017). This observation suggests, at least for certain diseases and
targets, that cellular context at the level of network regulation may be an important
determinant for achieving efficacy and that a more comprehensive systems-based
approach, in contrast to a focused yet restrictive target-based approach, may be
indicated to identify emergent biology (Hopkins 2008). Likewise, mechanism-based
toxicity can also be context-dependent, resulting from the expression of the target in
different tissues/organs or in the presence of particular comorbidities (Ferdinandy
et al. 2018; Marnett 2009). In addition to these intricacies, successful drug develop-
ment requires the study of a drug candidate’s mode of action in systems that span a
wide range of biological complexity and diversity (i.e., from purified subcellular
components to patient populations), involving timescales from milliseconds to life
spans (Sorger et al. 2011). Together these considerations emphasize the need to
make comprehensive systems-based measurements in experimental models that are
also iteratively coupled to computational models, resulting in predictions that lead to
new experiments. This iterative process leads to the refinement of the computational
models with the goal to define mathematically the alterations leading to disease and
toxicity (Woodhead et al. 2017). In QSP, hypotheses are tested across experimental
models of increasing clinical relevance, including increasingly sophisticated human
cell-based MPS, to help verify a mechanistic link between drug mode of action
and the underlying pathophysiology in patients (see Sect. 1.2). The identification of
pharmacodynamic (PD) markers that take into account context-dependent emergent
properties to quantitate drug-target interactions and reliably predict efficacy is an
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important deliverable for QSP. It is important to note that the pharmaceutical
industry has been implementing QSP (Visser et al. 2014).

Figure 1 describes the implementation of QSP based on a platform for
repurposing drugs and developing novel therapeutics. QSP begins with a focus on
patient sample analytics (Fig. 1a) where patient biospecimens (adjacent “normal”
and disease biopsies and longitudinal samples where possible) are obtained and
analyzed by methods including DNA sequencing, transcriptomics, epigenetics,
proteomics, metabolomics, and computational pathology (Spagnolo et al. 2016,
2017). Despite the challenge of obtaining longitudinal tissue biopsies, single time
point measurements can often provide valuable insights into disease progression. For
example, in the case of rapidly evolving diseases such as metastatic cancer, muta-
tional analysis of the primary tumor and patient-matched metastases could indicate
those clones from the primary tumor with the highest metastatic potential, routes of
dissemination from one site to the other, and the selection of therapy-resistant clones
(Macintyre et al. 2017). More generally, noninvasive blood sampling and single
cell “omics” (Keating et al. 2018) can be used to compute real- and pseudo-time
trajectories (Trapnell et al. 2014), and an in situ proteomics-based computational
pathology platform (Keating et al. 2018) can exploit spatial heterogeneity to infer the
evolution of disease-associated phenotypes.

These analyses are used to infer pathways of disease progression (Fig. 1b). In the
example of RNASeq from “normal” and disease tissue samples, the outputs from
comprehensive data analyses are differentially expressed gene sets that can be used
to infer disease-associated pathways through the implementation of validated
systems-based computational tools (Ge et al. 2018; Lee et al. 2008). Large numbers
of inferred pathways can be reduced to a smaller most significant number by
applying thresholding statistics and allow making inferences on causal molecular
networks (Hill et al. 2016). The selected pathways allow identification of known
molecular targets that serve as candidate targets for pharmacological and/or genomic
perturbations to investigate disease mechanism. Although superficially this stage of
QSP implementation may appear to take on the character of the target-centric
approach, there are significant differences that may ultimately bear on the high
rate of attrition due to lack of efficacy. For example, many candidate targets, in
contrast to one or a limited few, are being considered in parallel, and each is inferred
from a comprehensive unbiased dataset derived directly from patient samples.

Machine learning (ML) tools can then predict drug-target interactions (DTIs) or
chemical-target interactions (Fig. 1c) from databases such as DrugBank (Wishart
et al. 2018) and STITCH (Kuhn et al. 2010), in order to identify a focused library of
disease mechanism “probes” that includes known and predicted drugs (Chen et al.
2016; Cobanoglu et al. 2013, 2015; Keiser et al. 2009; Liu et al. 2016) and is
complemented by RNAi- and cDNA-based probes (Martz et al. 2014).

The predicted drug/chemical “probes” are then investigated as test drugs/
chemicals in human MPS (Fig. 1d) that recapitulate critical functions of normal
organs and clinically relevant disease states. The disease state MPS can be
constructed using patient-derived cells and/or by exposure to established disease-
potentiating environmental factors (see Sect. 1.2 below). MPS experimental models
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are amenable to phenotypic screening with the set of “probes” using high-content
screening (HCS) platforms to quantify disease-specific phenotypes. The goal of
these “probe” studies is to identify probes or probe combinations that reverse the
phenotype or genotype of the disease experimental models back to “normal.” The
selection of “probes” can be expanded through the use of computational medicinal
chemistry tools such as homology modeling, druggability assessment (Bakan et al.
2012; Volkamer et al. 2012), pharmacophore modeling (Sanders et al. 2012), and
molecular simulations (De Vivo et al. 2016). The predicted “probes” can also be
modified through medicinal chemistry to identify drug candidates that selectively
modulate specific molecular targets rather than the canonical targets. The quantifi-
cation of pharmacodynamic and disease-modifying effects of each probe enables
drug mode of action to be studied in relation to disease mechanism. Successful
probes from the in vitro studies can also be tested in animal models of disease.
Probes or probe combinations that are approved drugs can be the starting point for
drug repurposing.

The datasets resulting from use of the “probes,” coupled with publication-
validated knowledge, are used to construct computational models of disease
(Fig. 1e), which are refined and optimized through iterative experimental and
computational analyses (Sorger et al. 2011). The computational models can make
predictions based on selected perturbations, and these can be tested in the experi-
mental models (e.g., using well-annotated drug sets and gene/protein knockdown
studies).

The computational models ultimately predict emergent properties (Fig. 1f),
including diagnostic and pharmacodynamic biomarkers associated with the disease,
and therapeutic strategies (including drug combinations) that utilize novel and/or
repurposed drugs. These strategies can be tested in personalized MPS experimental
disease models using patient-derived cells (primary, adult stem cell-derived, and
induced pluripotent stem cells (iPSCs)) in a “preclinical trial” on a range of patient
genetic and disease backgrounds (see Sect. 1.2 below). The results from the “pre-
clinical trial” studies and clinical trial data are used to refine hypotheses of the
mechanisms of disease progression. Since some of the measurements made in the
experimental models are the same as those made in the patient samples, biomarkers
identified in the model can be retrospectively analyzed in the patient samples to
cross-validate the preclinical studies and establish a strong rationale for clinical trial
design. In the case of rare diseases where biospecimens may be scarce, the imple-
mentation of QSP could be initiated with MPS models. Furthermore, as discussed
below, MPS models could be used to predict both on-mechanism and off-target
toxicities (Vernetti et al. 2016). It is important to note that validated, published
knowledge about the disease, targets, pathways, biomarkers, and drugs can be used
as input information at any point in the QSP platform (Stern et al. 2016). Selected
key examples of applying QSP in developing therapeutic strategies are presented in
Table 1.

Chemogenomic option (Fig. 1a’). A specific chemogenomic version of the plat-
form can be applied at the beginning of the pipeline, preferably using higher-
throughput human, 3D models of disease. In silico chemogenomic approach
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(Fig. 1a’–f), inferring the molecular mechanisms of a phenotype of interest based on
a collection of chemicals identified through phenotypic screening, offers an alterna-
tive framework to identify novel therapeutics (Bredel and Jacoby 2004; Brennan
et al. 2009; Digles et al. 2016; Pei et al. 2017; Prathipati and Mizuguchi 2016). The
collection of chemicals is used therein to mine the DTI or chemical-target interaction
databases (Gaulton et al. 2017; Kooistra et al. 2016; Szklarczyk et al. 2016; Wishart
et al. 2018) and extract ML-based information on associated targets (Cobanoglu
et al. 2015; Gfeller et al. 2014; Nickel et al. 2014; Yamanishi et al. 2014), which may
be further linked to enriched pathways and gene ontology (GO) annotations
(Huntley et al. 2015; Kanehisa et al. 2017; Slenter et al. 2018). Thus, the cellular
pathways and environment and the biological functions and processes affected by
the chemicals are systematically explored. Such system-level analyses (Bian et al.
2019; Pei et al. 2017, 2019; Wei et al. 2018; Wu et al. 2019; Xu et al. 2016) assist in
deciphering polypharmacological effects and disease mechanisms (Fig. 2).

1.1.1 Challenges and Opportunities in Applying QSP
The unprecedented molecular and cellular characterization of patient samples, in
conjunction with well-documented electronic health records, enables the compre-
hensive and unbiased QSP platform to determine complex disease mechanisms
and inform optimal therapeutic strategies, including the identification of emergent
properties (Fig. 1). The paradigm of iterative experimental and computational
modeling provides testable mechanistic hypotheses serving to connect the actual
pathogenesis to the ensemble of modules comprising QSP, despite the large spatio-
temporal scales they encompass. For example, the presence in the MPS models of
the disease-specific pathways inferred from the patient data can be determined,

Table 1 Selected key examples of applying QSP in developing therapeutic strategies

Authors Title

Schoeberl et al.
(2009)

Therapeutically targeting ErbB3: a key node in ligand-induced activation of
the ErbB receptor-PI3K axis

Gadkar et al.
(2016b)

Evaluation of HDL-modulating interventions for cardiovascular risk
reduction using a systems pharmacology approach

Dziuba et al.
(2014)

Modeling effects of SGLT-2 inhibitor dapagliflozin treatment versus
standard diabetes therapy on cardiovascular and microvascular outcomes

Howell et al.
(2014)

A mechanistic model of drug-induced liver injury aids the interpretation of
elevated liver transaminase levels in a phase 1 clinical trial

Pei et al. (2017) Connecting neuronal cell protective pathways and drug combinations in a
Huntington’s disease model through the application of quantitative systems
pharmacology

Vaidya et al.
(2019)

Combining multiscale experimental and computational systems
pharmacological approaches to overcome resistance to HER2-targeted
therapy in breast cancer

Yin et al. (2018) Quantitative systems pharmacology analysis of drug combination and
scaling to humans: the interaction between noradrenaline and vasopressin in
vasoconstriction

Pei et al. (2019) Quantitative systems pharmacological analysis of drugs of abuse reveals the
pleiotropy of their targets and the effector role of mTORC1
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thereby providing one level of cross-validation. Chemical and genetic probes
predicted to modulate these pathways can then be tested in the MPS models to
determine their effect on disease phenotypes recapitulated in the model, providing a
second level of clinical relevance. In parallel, systems modeling of these inferred
pathways could be used to predict disease-specific biomarker profiles that can form
the rationale for an observational study, establishing yet another critical connection
between the preclinical model and the patient. Finally, epidemiological analysis of
clinical outcome in those patients being treated for a comorbidity could provide
complementary evidence for a particular disease mechanism and could establish a
strong basis for drug repurposing. The QSP platform provides the critical nexus
between pharmacodynamic markers and disease mechanism that promises to reduce
attrition and facilitate the regulatory process. This focus on connecting disease
mechanism with drug mode of action enables QSP to be effective for identifying
drugs that can be repurposed and for optimizing combination therapies, particularly
for the treatment of complex diseases. This approach also functions as a starting
point for harnessing medicinal chemistry to evolve novel therapeutics that have
higher specificity and efficacy than the DTI taking advantage of the poly-
pharmacology of drugs. A key target other than the canonical target may be critical,
and the “other” target engagements can be optimized.

The strength of QSP lies in its transdisciplinary approach, and this presents its
greatest challenge, in the form of organizational barriers. For the full potential of
QSP to be realized, multidisciplinary teams need to be assembled, likely across two
or more institutions, under leaders with expertise not only in one particular field but
also possessing the sophisticated set of skills to manage critical interfaces across
several disciplines. The requirement for this paradigm shift in basic research and
translational medicine is increasingly being recognized by industry, academia, and
government. Consequently, we anticipate that the organizational barriers to full
implementation of QSP will be significantly reduced.

1.2 Human Microphysiology Systems (MPS)

The development of human MPS has grown out of the recognition that animal
models and simple 2D monocultures of cells do not reflect the complexity and
specificity of human physiology, toxicology, and disease mechanisms (Hartung
2009; Seok et al. 2013; Sorger et al. 2011; Stern et al. 2016). The challenge has
been to develop in vitro human experimental models using patient-derived cells,
either primary, tissue-resident adult stem cells (AdSCs), embryonic stem cells
(ESCs), or induced pluripotent stem cells (iPSCs), that recapitulate enough tissue/
organ functions to serve as useful models in the drug discovery and development
pipeline. There is the added potential to create a personalized platform for preclinical
trials using these patient-derived cells. Another opportunity is to evolve these
personalized MPS models into tissue replacement therapeutics (Xie and Tang
2016). The use of HCS methods to acquire temporal-spatial information and quanti-
tative phenotypes from the 3D, multicellular MPS systems has been critical (Stern
et al. 2016; Taylor 2012).
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Figure 3 illustrates a range of in vitro human experimental models that increase in
tissue/organ biomimetic structure and function from left to right. A common goal in
the discovery and development pipeline is to select the optimal model for the stage
(“fit-for-purpose”). The continuum in Fig. 3a–f involves sacrificing throughput vs
biomimetic complexity.

Static 2D cultures (Fig. 3a), typically consisting of cell lines analyzed in
microplates, have dominated biomedical research for over 30 years. These static
2D cultures have been used extensively in high-throughput screening (HTS) and
high-content screening (HCS) applications for target ID, target validation, screening,
hit to lead, and early toxicology testing (Fang and Eglen 2017). However, there has
been a shift away from static 2D cultures since they do not adequately reflect human
physiology/pathology. The more recent use of 3D experimental models dates back to
the early 1900s, and the historical timeline of the evolution of 3D approaches has
recently been summarized (Simian and Bissell 2017).

Static 3D spheroids (Fig. 3b) were originally developed by Sutherland and
collaborators to better recapitulate the functional phenotypes of human cancer cells
in response to radiation therapy and as a general model for tumors (Fang and Eglen
2017; Sutherland et al. 1970). Spheroids are produced by a variety of methods that
form spheres of cells (ca. 100–400 um diameter) that have more physiological cell-
cell and cell-matrix interactions and can generate gradients of nutrients, oxygen,
signaling molecules, and metabolites from the outer layers of cells to the center,
mimicking a solid tumor better than 2D models (Fang and Eglen 2017). Most
spheroids use a single cell type such as cancer cells or hepatocytes, but it is possible
to construct spheroids with more than one cell type. Static 3D spheroids have been
used for both HTS and HCS in microplates, but confocal imaging is required for
single cell resolution.

Level of Human In Vitro Biomime�c Structure/Func�on  

Sta�c 
2D Culture

Sta�c 
3D Spheroids

Organoids in 
Fluidic MPS

Sta�c
Organoid MPS

Integrated, Fluidic 
Organ MPS

Biomime�c, 
Fluidic MPS

a fedcb

Level of Throughput

Fig. 3 Human in vitro experimental models span a broad range of experimental throughput and
biomimetic structure and function
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Static organoid MPS (Fig. 3c) have been defined in multiple ways (Simian and
Bissell 2017); however, we prefer the following broad definition: an organoid is an
in vitro 3D cellular cluster derived exclusively from primary tissue, ESCs, AdSCs, or
iPSCs, optimally capable of self-renewal and self-organization, and exhibiting
similar organ functionality as the tissue of origin (slightly modified from Fatehullah
et al. 2016). Static organoids developed from either AdSCs, ESCs, iPSCs, or primary
patient cells (sometimes mixed with some human cell lines for selected cell types)
recreate a partial biomimetic for many types of organs, which can be used for drug
discovery, development, and the exploration of disease mechanisms (Dutta et al.
2017; Low and Tagle 2017; McCauley and Wells 2017; Prestigiacomo et al. 2017;
Schwartz et al. 2015; Shamir and Ewald 2014; Skardal et al. 2016; van den Berg
et al. 2019). Like static spheroids, static organoids can be investigated by HTS and
HCS in microplates using confocal imaging.

The same principles used in developing static organoids can be applied to
organoids in fluidic MPS (Fig. 3d). In fact, it is possible to combine the organoid
technology with biomimetic, fluidic MPS (Fig. 3e) engineering principles to better
address the limitations of each approach (Edington et al. 2018; Takebe et al. 2017;
Wevers et al. 2016). Organoids in fluidic MPS enable the physiologically relevant
shear stress required by many tissues, coupled with at least partial spatial cell-cell
and cell-matrix interactions. They can also be linked to other organ MPS for
integrated functions using fluidic connections.

Biomimetic, fluidic MPS (Fig. 3e) are devices designed to maximize physiologi-
cally relevant structural relationships between cells, natural gradients of physiologi-
cal parameters (e.g., oxygen tension, hormones), matrix materials, mechanical cues
including shear stress of vascular flow, mechanical movements, innervation, and
immune system communication (Bhatia and Ingber 2014; Low and Tagle 2017;
Watson et al. 2017). The focus is on constructing an organ model that is as close to a
functional unit (e.g., liver acinus, cardiac muscle fibers, lung) as possible (Huh et al.
2010; Li et al. 2018; Lind et al. 2017). Early advances were stimulated in particular
by research of Don Ingber and his colleagues at the Harvard Wyss Institute,
including a lung biomimetic, fluidic MPS (Bhatia and Ingber 2014; Huh et al. 2010).

Presently, static organoids, organoids in fluidic MPS, and biomimetic, fluidic
MPS are being created for most normal and diseased organs (Esch et al. 2015; Fang
and Eglen 2017; Low and Tagle 2017; van den Berg et al. 2019). The complexity of
current biomimetic, fluidic MPS models is not amenable to high-throughput studies,
yet the high content of the structure and functionality are optimal to validate findings
from higher-throughput models, as well as to investigate the mechanisms of disease
progression using HCS over extended time periods (ca. 1 month or longer).

The most ambitious platform is the integrated, fluidic organ MPS (Fig. 3f) where
multiple organ MPS are linked together either functionally (Vernetti et al. 2017) or
physically (Edington et al. 2018; Low and Tagle 2017; Oleaga et al. 2019; Satoh
et al. 2017; Skardal et al. 2016). Michael Shuler and his colleagues have been
pioneers, demonstrating in the 1990s that linking multiple organ systems allowed
organ-organ communications that could be used to identify toxicity and to perform
physiologically based pharmacokinetics (PBPK) (Sin et al. 2004; Sweeney et al.

Harnessing Human Microphysiology Systems as Key Experimental Models for. . .



1995). This concept has been extended and applied with an integrated, fluidic organ
MPS to explore ADME and PK/PD using QSP approaches (Yu et al. 2015). There
are many challenges and opportunities in developing and applying these “body-on-a-
chip” systems, but the progress over the last 5 years has been impressive (Low and
Tagle 2017; Shuler 2017; Skardal et al. 2016; Wikswo et al. 2013b).

A consortium of pharmaceutical company representatives (IQ Consortium),
participating in the National Center for Advancing Translational Sciences
(NCATS) microphysiology systems program, recently wrote an article discussing
the translation of MPS models from the laboratory to commercial use by the
pharmaceutical industry (Ewart et al. 2017). It is clear that the industry understands
the great potential of these systems and is giving important guidance to the field. In
addition, the FDA and the EPA have collaborated with NCATS to learn of the
potential of these systems and to provide their insights into the needed functionalities
and reproducibility. Furthermore, the dramatic advances in the development of the
biology, materials science, and microfluidics have led to the formation of numerous
companies offering platforms that will accelerate the biomedical sciences, drug
industry, and clinical applications based on some emerging standards (Zhang
and Radisic 2017). Recently, May et al. (2017) explored the advantages and
disadvantages of organoids, biomimetic, fluidic MPS, and integrated, fluidic organ
MPS. Table 2 lists selected examples of human experimental MPS disease models.

1.2.1 Challenges and Opportunities in Developing and Applying MPS
The MPS field has exploded during the last 5 years, and dramatic advances have
been made in microfluidic devices, in-line as well as cellular biosensors, the devel-
opment of renewable cells from iPSCs (where there is still the need to mature the
iPSCs to the adult genotype and phenotype), optimizing matrix biochemical content
and stiffness, the optimization of media for normal and disease states in different
organs, the exploration of a “universal” medium for connected organs, the

Table 2 Selected examples of human experimental MPS disease models

Authors Title

Jain et al. (2018) Primary human lung alveolus-on-a-chip model of intravascular
thrombosis for assessment of therapeutic clinical pharmacology and
therapeutics

Blutt et al. (2017) Gastrointestinal microphysiological systems

Workman et al.
(2017)

Engineered human pluripotent stem cell-derived intestinal tissues with a
functional enteric nervous system

Hachey and Hughes
(2018)

Applications of tumor chip technology

Clark et al. (2018) A model of dormant-emergent metastatic breast cancer progression
enabling exploration of biomarker signatures

Vernetti et al. (2016) A human liver microphysiology platform for investigating physiology,
drug safety, and disease models

Atchison et al.
(2017)

A tissue-engineered blood vessel model of Hutchinson-Gilford progeria
syndrome using human iPSC-derived smooth muscle cells
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involvement of the innate and adaptive immune systems, as well as the role of
chemical, electrical, and mechanical cues on functions. NCATS has involved the
pharmaceutical industry, the FDA, and the EPA in the MPS programs, and there has
been great feedback to guide developments. Further technical developments, as well
as the demonstration of reproducibility of the models from day to day and between
distinct sites, will position MPS to have a major impact on the drug discovery and
development process, as well as to help to define the progression of diseases in
human, in vitro models. MPS models are projected by many to refine, reduce, and
ultimately replace animal models of disease and ADME-Tox sometime in the future.

2 QSP Involves Iterative Application of Experimental
and Computational Models

The iterative use of experimental and computational models of disease and ADME-
Tox is the hallmark of the practice of QSP (Fig. 1). This section discusses in more
detail the key role of computational methods in the QSP platform, while Sect. 3
discusses in more detail the application of MPS in the QSP platform.

2.1 Identifying Differential Omics from Patient Samples

2.1.1 Early Omics and Implications for Human Disease: The GWAS Era
Omics generally refers to technologies that profile the entirety of the biological
domain of interest (Hasin et al. 2017), which allows the investigator to take an
unbiased data-driven, instead of a focused hypothesis-driven, approach to research.
The first omics field to emerge was genomics, driven by the “SNP chip” (reviewed
by LaFramboise 2009), which allowed high-throughput genotyping of individuals
across common variants, termed genome-wide association studies (GWAS)
(Visscher et al. 2012a). Some early-disease GWAS results were translational
successes. The best example is age-related macular degeneration, where over half
the disease heritability was explained by the GWAS results that guided drug
discovery (Black and Clark 2016). However, this was not true for other complex
diseases as the results could only explain a tiny portion of heritability. For schizo-
phrenia (Visscher et al. 2012b) and obesity (Weedon et al. 2006), only 1–2% of
heritability could be attributed to the GWAS-identified SNPs (Visscher et al. 2012a).
This limitation applies to complex traits as well. For example, a study examining
height across 253,288 individuals found 697 SNPs, which together explained ~20%
of heritability (Wood et al. 2014). Further, the effect sizes of identified SNPs from
most GWAS are typically vanishingly small, which necessitates huge sample sizes
(Visscher et al. 2012a). Taken together, the leading paradigm is that complex
diseases are polygenic and are therefore caused by complex interactions of genes
as opposed to single genes (Wray et al. 2018). While the knowledge obtained using
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GWAS has provided priceless insights into the biology of complex disease and drug
discovery (Floris et al. 2018), it is only one piece of the puzzle.

2.1.2 Post-GWAS Era Omics Technologies and Strategies for Their Use
in Human Disease

GWAS results often implicate numerous variants which have some degree of
association with the disease; however, a mechanistic understanding of how these
variants contribute to the disease phenotype remains largely incomplete (Wray et al.
2018). Other omics technologies (summarized in Table 3) offer the chance to close
the gap left by GWAS (Karczewski and Snyder 2018). For example, the independent
role of the epigenome in type 1 diabetes was shown by identifying differentially
methylated regions using monozygotic twins as case controls (Paul et al. 2016). In
another example, transcriptome data from patients with inflammatory bowel disease
was used to identify potentially repurposable drugs (Dudley et al. 2011).
Metabolomics has emerged relatively recently and shows great potential in further
characterizing human disease (Wishart 2016). Lipidomics is another discipline
which gained importance in the last decade with advances in mass spectrometry,
driven by the tight association of lipids with many diseases including cardiovascular
diseases, diabetes, stroke, NAFLD, neurological disorders, and cancer (Yang and
Han 2016).

Since the cost of omics technologies continues to fall, investigators are increas-
ingly combining multiple types of omics to obtain a more complete picture of the
underlying biology (Hasin et al. 2017; Karczewski and Snyder 2018). One approach
is to combine gene expression profiling with GWAS to identify quantitative trait
loci, that is, variants which are associated with gene expression (Karczewski and
Snyder 2018). A number of studies, reviewed in Sharma et al. (2015), have tied
several genes – most notably PNPLA3 – to NAFLD progression. Interestingly,
metabolic profiles associated with risk variants do not directly correlate with risk
of disease (Sliz et al. 2018), underscoring the complex nature of the disease and the
value of complementary multi-omics approaches for studying NAFLD.

Table 3 List of key omics analyses and reviews

Domain Applications Reference

DNA Genome: Variant calling,
GWAS, SNPs

Laurie et al. (2016) and He et al. (2017)

Epigenome: Chip-Seq, BS-seq Bailey et al. (2013) and Kurdyukov and
Bullock (2016)

RNA Transcriptome: gene expression
profiling

Conesa et al. (2016) and Koch et al. (2018)

Protein Proteomics: protein abundance Larance and Lamond (2015)

Metabolites Metabolomics: metabolite
abundance

Johnson et al. (2016) and Wishart (2016)

Lipids Lipidomics: lipid classes and
pathways

Yang and Han (2016)
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Most of the early omics technologies have been based on tissue samples that do
not preserve the spatial relationships between cells, matrix, and tissue structures
(e.g., blood vessels, ducts) and “average” the analyses among many cells. For
example, the omics sampling of tumor samples has until recently relied on cores
of tissue that do not consider the spatial heterogeneity in the tumors. We now
understand that heterogeneity within a tumor is critical to understanding the evolu-
tion of the tumor. Recently, a variety of single cell methods have emerged to address
this challenge (Keating et al. 2018). One of these methods is hyperplexed fluores-
cence imaging (Gough et al. 2014; Spagnolo et al. 2016, 2017). This method is based
on computational and systems pathology using iterative fluorescence labeling of
specific targets within formalin-fixed paraffin-embedded (FFPE) tissue sections or
tissue microarrays (TMAs), imaging, quenching of the fluorescence, and then
repeating the cycle for dozens of biomarkers in the same sample (Gerdes et al.
2013). Spatial analytics are then applied to the samples (Spagnolo et al. 2016). This
method preserves the spatial relationships within tissues while allowing omics
analyses based on the spatial connections within microdomains. Recently, this
platform has been applied to a colon cancer patient cohort and a risk recurrence
prognostic analysis demonstrated (Uttam et al. 2019).

2.1.3 Remaining Challenges of Using Omics to Study Human Disease
While omics continue to further our understanding of human disease, there are
remaining challenges. Omics datasets are high-dimensional, with many more
observations (e.g., genes, metabolites, proteins, lipids, etc.) assayed than samples
(e.g., patients) taken (Teschendorff 2018). However, there has been considerable
effort in developing specialized statistical methods for omics including the develop-
ment of mixed graphical models (Manatakis et al. 2018) for learning disease models.
Batch effects or technical confounding factors introduced by experimental design
have historically been (Lambert and Black 2012) and continue to be (Goh et al.
2017; Goh and Wong 2018) the bane of omics studies. In a study examining
epigenome of obese men as compared to lean controls, the authors found ~5.5% to
be differentially methylated; however, these differences were entirely attributable to
batch effects (Buhule et al. 2014). In another dramatic example, failure to account for
technical variability introduced by using a different platform for the cases and
controls led to the retraction (Sebastiani et al. 2011) of a paper originally published
in Science (Sebastiani et al. 2010). There is great potential power in the use of omics
approaches, but significant controls and data optimization steps are required.

2.2 Inferring Pathways of Disease from Omics Data

There is increasing interest in using patient-derived omics data for drug discovery to
help increase therapeutic efficiency (Floris et al. 2018; Hodos et al. 2016). GWAS
data has been used to help guide drug discovery; however, these data alone do not
usually provide sufficient information for rational drug design (Pushpakom et al.
2018). Gene expression data can be an excellent type of omics to use for drug
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discovery, and transcriptomic data was found to predict drug sensitivity of breast
cancer cells better than genomic, epigenomic, and proteomic data (Costello et al.
2014). Other omics data still have their value: proteomics data, for example, provide
details on posttranslational modifications that are not visible at the transcript level
yet may provide insights into the nature of signaling in disease (Erdem et al. 2016).

Inferring pathways of disease progression begins with defining the difference
between “diseased” and “healthy” states in terms of specific omics measurements.
For example, in transcriptomic analysis, one might identify differentially expressed
genes (DEGs) as those genes with transcript levels that change significantly between
disease samples and healthy controls. Exactly defining “diseased” and “healthy”
states themselves however is often difficult due to the inherent noise of biological
data and inter-sample variability. Once statistically significant differences between
diseased and healthy states are identified, the biological mechanisms that give rise to
these differences can be hypothesized. For example, pathways containing higher
than expected numbers of DEGs are commonly implicated in disease progression
and subject to further investigation. Similarly, pathways upstream of transcriptional
regulators of DEGs may also be implicated in disease progression. Connectivity
mapping can then be used to find drugs which “reverse” the gene expression pattern
(Musa et al. 2017).

2.3 Identifying Drugs, Targets, and Pathways by Machine
Learning for Drug Repurposing and as a Starting Point
for Developing Novel Therapeutics

Drug repurposing (also known as drug repositioning) refers to the process of
identifying new therapeutic indications for approved drugs or investigational drugs
(Allarakhia 2013; Ashburn and Thor 2004; Keiser et al. 2009). Drug repurposing
takes advantage of established pharmacology of existing drugs to drastically reduce
risk and cost of development, making it an attractive track for drug discovery and
development (Pushpakom et al. 2018). A well-known example of drug repurposing
is the anticancer drug imatinib, which was originally developed in 2001 for the
treatment of chronic myeloid leukemia and, later in 2008, approved by the US
Food and Drug Administration (FDA) for treating gastrointestinal stromal tumors
(Al-Hadiya et al. 2014). A key step of drug repurposing is to identify new DTIs.
However, experimental identification of DTIs is time-consuming, costly, and lim-
ited. For example, the current version (v5.1.1) of DrugBank (Wishart et al. 2018)
contains data on 16,959 interactions between 10,562 drugs and 4,493 targets, while
the presence or absence of the remaining interactions (99.96% of the complete space
of interactions) is yet to be determined. Therefore, developing machine learning
(ML)-based computational methods (Fig. 1c) for efficient DTI prediction is of
great need.

To date, both supervised and semi-supervised ML methods have been adopted in
DTI predictions (Chen et al. 2016, 2018). Most supervised learning methods,
including kernel regression (Yamanishi et al. 2008), random forest (Cao et al.
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2014), bipartite local models (Bleakley and Yamanishi 2009), regularized least-
square classifier (van Laarhoven et al. 2011), kernelized Bayesian matrix factoriza-
tion, and similarity-based deep learning (Zong et al. 2017), use the known DTIs as
positive samples and consider the rest as negative ones. The structural and physico-
chemical properties of drugs, such as 2D fingerprints, 3D conformations, topological
descriptors, and the sequence, structure, and expression data of targets such as
protein sequence and structural motifs and gene expression profiles, are utilized to
generate feature vectors of drugs or targets or to calculate drug-drug similarities and
target-target similarities. Other supervised learning methods such as probabilistic
matrix factorization (Cobanoglu et al. 2013) and integrated neighborhood-based
method (Chen et al. 2016) utilize the known DTI patterns to compute drug-drug
similarities and target-target similarities and predict novel DTIs, independent of the
structural or physicochemical properties of drugs and targets. Semi-supervised
methods, on the other hand, use labeled data (known DTIs) to infer labels for
unknown DTIs, and these inferred DTIs play a role in the training process. Examples
include the manifold Laplacian regularized least-square method (Xia et al. 2010)
based on integrated data from known DTIs, chemical structures and genomic
sequences, and the deep learning-based framework (Wen et al. 2017).

Most current ML-based methods simply regard DTI as an on-off relationship.
Development of selective and potent drugs may require further consideration of
specific binding poses and affinities. ML-based DTI prediction serves as a first step
for identifying new associations, while further computational biophysical and
medicinal chemistry tools help characterize the mechanistic aspects and specificities
of predicted DTIs. For example, if the drug-binding site on the target is unclear or
new (e.g., allosteric) sites beyond those (orthosteric) traditionally targeted are of
interest, a useful method of approach is to perform druggability simulations (Bakan
et al. 2012; Ivetac and McCammon 2012; Lexa and Carlson 2011; Loving et al.
2014). These simulations are conducted in the presence of a series of probes
representative of drug-like fragments, whose simulated binding properties disclose
the high-affinity binding sites as well as favorable binding poses on the target.
Statistical analysis of these binding events permits us to build pharmacophore
models (see, e.g., Bakan et al. 2015; Mustata et al. 2009), which, in turn, are used
for screening virtual libraries of small compounds and identifying best matching
compounds, termed “hits.” Top hits identified at this stage are experimentally tested
(e.g., via binding affinity assays (Pollard 2010)), and the feedback from experiments
is used to revise computational models. In addition, with a set of bioactive hits, a
numerical description of molecular structure/properties to known biological activity
can be generated via quantitative structure-activity relationship (QSAR) (Wang et al.
2015) analysis, which further guides the rational structural optimization of the hits
into lead compounds. The combined computational and experimental methods are
performed iteratively until the refinement of the compounds to achieve desirable
biological activity in the MPS models.
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2.4 Computational Models of Disease

A central element of QSP is the iterative computational/experimental feedback loop.
In order to understand the biological mechanisms of disease onset and progression, it
is helpful to formalize certain aspects of the experimental system into a mathematical
model that can be manipulated in silico. When dealing with in vitro systems,
computational disease models are usually limited to interactions within and between
a small number of cells and most often take the form of either agent-based models
(ABMs) or systems of ordinary differential equations (ODEs). In an ABM, each
biological cell is represented as an autonomous entity that interacts with its environ-
ment and neighboring cells according to pre-defined rules. The behavior of the
system as a whole is therefore an emergent property of this collection of agents.
Although computationally more expensive than ODE models, ABMs are easily
interpretable in terms of cellular features and are readily adaptable to novel
geometries such as those found in MPS experiments. ABMs have been used to
explore a range of diseases, including tumor growth (Szabo and Merks 2013) and
liver fibrosis (Dutta-Moscato et al. 2014). ODE models are typically higher resolu-
tion than ABMs and represent the system at the level of molecules rather than cells.
As they are computationally efficient and mathematically straightforward, these are a
popular choice for modeling signaling pathways and regulatory networks. The
standard ODE approach assumes that the molecular components of cellular chemis-
try are contained in a well-mixed system that obeys mass action kinetics, although
more complex, spatially realistic models (represented by partial differential
equations, PDEs) and/or stochastic models (described by stochastic differential
equations) are gaining popularity, especially in the description of complex
microphysiological processes (e.g., MCell for modeling synaptic transmission)
(Bartol et al. 2015; Kaya et al. 2018).

In the context of the computational model, the difference between “diseased” and
“healthy” states arises from changes in parameters, such as reaction rates or molecule
numbers. For example, differences in computationally predicted transcript profiles
between healthy and diseased cells might arise as the result of an altered binding
affinity and/or posttranslational modification in the computational model (Fig. 4).
Changes in the computational model that promote the disease phenotype indicate
hypothetical mechanisms of disease progression. If rectifying these changes (e.g.,
via drugs) in the in vitro system reverses the disease state, then the computational
model has successfully identified a disease mechanism; if not, then the computa-
tional model is refined, and another hypothesis is generated and experimentally
tested. For example, by using separate compartments, an ODE was able to capture
the effects of liver zonation on steatosis (Ashworth et al. 2016).

2.5 Computational Models of ADME-Tox

Since the days of Fortran programs such as MODFIT (Allen 1990), drug discovery
researchers recognized the advantages in storing, managing, and analyzing large
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amounts of pharmacokinetic (PK) data. Drug developers require computational tools
that have a good correlation between in silico, in vitro, and in vivo absorption,
distribution, metabolism, and excretion (ADME) data to address the challenges of
predicting PK behavior in drug development in order to determine dosing regimens,
target organ exposure, and identify compounds or their reactive metabolites for
off-target liabilities. The current computational modeling for drug development is
evolving from simple classical PK compartmental models that describe the disposi-
tion of drugs in the body and the component ADME properties to physiologically
based PK (PBPK) models that predict PK based on the physiochemical properties of
the drugs and knowledge of the physiology of the organism. Although the concept of
PBPK modeling has been around since 1937, it is the relatively recent advances in
computing power and preclinical physiologic data that enable effective PBPK
modeling. Computational approaches now include in silico predictors for drug
metabolism, pharmacokinetics, and toxicology using ordinary differential equations,
machine learning neural networks, Bayesian, recursive partitioning, and support
vector machine algorithms (Byvatov et al. 2003; Hou et al. 2001; Li et al. 2007;

Fig. 4 Two views of a detailed computational model of immunoreceptor signaling mediated by the
high-affinity receptor for IgE (Fc epsilon R1). Panel (a) shows the molecular components (yellow
rectangles) and processes (purple circles) that govern the flow of activity in the network. Each
process represents either a binding interaction between the components or posttranslational modifi-
cation of a component (e.g., phosphorylation). Enormous complexity is generated just from the
basic interactions that include binding and phosphorylation. Although this complexity does not
limit our ability to simulate the dynamics of such systems, it does limit our ability to understand the
dynamics. Through a process of static analysis, we can reduce the complexity and interpret the
dynamics in terms of simple motifs and mechanisms, such as the positive feedback loop that is
illustrated in panel (b) (edges marked with “x”). Modified from Sekar et al. (2017)
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Muller et al. 2005; Sadowski and Kubinyi 1998; Wagener and van Geerestein 2000;
Walters and Murcko 2002; Zernov et al. 2003). There are many commercial and
academic computational tools available (R Project, GastroPlus, DILIsym, Simcyp,
and MATLAB among others) for PBPK prediction (Lin et al. 2017; Tan et al. 2018;
Zhuang and Lu 2016). Toxicology tools based on R-group structural alerts
(DEREK), QSAR (MC4PC, MDL-QSAR, TopKat, and ADMET Predictor®

among others) and molecular descriptors (PaDel) are also being developed for
predicting human organ and systemic toxicity (Chen et al. 2014; Wu and Wang
2018).

All of these computational models depend on the availability of experimental data
accurately representing the clinical physiology. The advanced physiological rele-
vance of humanMPS models is well suited to providing such data. In particular, liver
MPS models are useful in predicting intrinsic hepatic clearance, which can then be
applied to predict other PK parameters (Ewart et al. 2018; Tsamandouras et al.
2017). In addition to predicting PK, data from MPS models also allow for modeling
of pharmacodynamic (PD) properties, enabling PK/PD modeling to guide drug
development decisions. Finally, as MPS models can utilize patient-specific cells,
PK/PD and toxicology modeling can be applied to individual genetic and physio-
logic backgrounds to guide the development of precision medicine models
(Tsamandouras et al. 2017). The combination of MPS models and the advancing
computational modeling will aid in reducing the time and cost of preclinical drug
discovery.

3 Human Organ Microphysiology Systems (MPS)
Complement Animal Models of Disease and ADME-Tox

As discussed above, the minimal concordance between animal models of disease and
toxic liabilities, and human disease and toxicity, is one of the factors in the low
success rate for drug candidates entering phase 2 clinical trials. However, animal
models are still the gold standard in research and development; and regulatory
agencies still require animal data before going into humans. Continued
developments in the MPS field have the potential to initially complement animal
models and then refine, reduce, and ultimately replace animal testing.

3.1 Designing Human Organ MPS

As illustrated in Fig. 2, MPS models include a continuum from simple 2D models to
complex, integrated multi-organ systems. The design and implementation of an MPS
is a “systems engineering” challenge that must take into account the complete
platform consisting of microdevices, control systems, cells, extracellular matrices,
media, readouts, and data analysis (Wikswo et al. 2013a). This becomes more
important and challenging when integrating multiple organ MPS, requiring consid-
eration of issues of organ scaling, sequencing, media composition, volume, and flow
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(Wikswo et al. 2013b). The rapid growth in the development of MPS is partially
driving, and partially driven by, the rapid development of component technologies,
which provides a diversity of choices, but can also complicate the design and
optimization of the model. The ultimate goal is to create a multi-organ human-on-
a-chip that will recapitulate a wide range of human physiology for experimentally
modeling complex systemic diseases and toxicities, but such a complex model is not
needed for many studies. Because all experimental models have limitations, and the
simplest model that provides the required information is usually the best choice,
perhaps the most important considerations in designing an MPS are how the model
will be used and what the key functional indications will be.

Models can be roughly divided into two types: (1) self-assembly models that
range from cells spreading on a 2D substrate to multilayer organoids in fluidic
chambers and (2) biomimetic models in which the design of the device and/or the
assembly of the model promotes cellular organization that mimics the in vivo
organization. Generally, self-assembly models are easier to apply in high-throughput
applications, while biomimetic models provide deeper functional information. In
either case, many choices go into the design of an MPS. Here, we will focus on the
design of biomimetic models, though many of the same considerations apply to
simpler models.

A major focus in the development of biomimetic models is the engineering of the
device to recapitulate the organization of cells in vivo and also, in some cases, to
engineer active elements that mimic functions such as breathing in the lung (Huh
et al. 2010), contraction of muscle (Truskey et al. 2013), the beating of the heart
(Benam et al. 2015; Lind et al. 2017), as well as others. To facilitate the prototyping
of these systems, polydimethylsiloxane (PDMS) has been the material of choice due
to low cost and ease of rapid casting in a laboratory setting. PDMS is also oxygen
permeant, reducing the need to provide for additional oxygenation in the design of
the model. However, PDMS is hydrophobic and readily absorbs hydrophobic
molecules including some drugs and other test molecules, especially those with a
higher logP and few or no hydrogen-bond donor groups (Auner et al. 2019). There
are now many commercial devices that are glass and/or plastic, reducing the
likelihood of compound binding (Lenguito et al. 2017; Ribas et al. 2018). Existing
commercial devices have less flexibility for customizing model architecture and
require more attention to oxygenation of the cells in the model, but many have
already been used to implement specific organ models and therefore provide a good
starting point for design or development. Driving flow in the MPS is also an
important consideration and has been accomplished by using gravity, either through
rocking or media transfers between outlet and inlet, pressurized systems, syringe
pumps, and peristaltic pumps. In all cases, it is important that the pumping system
can provide the required range of flow rates and that a physiological shear stress on
the model tissues is attained.

Because a major goal in the development of MPS is to model human physiology,
the focus has been on the use of human cells. While there is some interest in
developing MPS models using animal cells, both for validation of the model with
respect to the larger number of compounds that have been tested in animal models
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and for the prediction of preclinical animal safety, relatively few MPS have been
constructed with animal cells. For human cells, the choice is between primary cells,
ESC, AdSC, iPSC, and cell lines. Primary cells are still the gold standard for adult-
like human organ function, but specific functions may vary from donor to donor, and
therefore a specific lot of cells may need to be selected and then used for the duration
of a project to minimize variability from the cells. iPSCs hold promise to provide an
unlimited supply of human cells, including isogenic cells for models with multiple
cell types, but improved protocols to generate adult-like cells are still in development
(Besser et al. 2018). The inclusion of one or more human cell lines in a multicell
MPS is still an attractive option for higher-throughput applications or where the
functional role of the cell type is adequately provided by a cell line. The media used
in an MPS is typically selected to support the cells used, but this can become
difficult in multicellular models where different cell types require different media
compositions. This is further complicated in integrated organ systems. Mixing media
has been one approach (Vernetti et al. 2017), but there is some evidence that creating
vascularized organ systems with media that is optimized for the endothelial cells in
the vascular channel, while parenchymal cells are perfused with a cell-specific
media, may be a good solution, especially in coupled organ systems. In addition to
the media consideration, selecting and optimizing an appropriate extracellular matrix
(ECM) material is important in most models. Collagen 1 is widely used, but other
hydrogels have also been used, and achieving physiologically relevant biochemistry
and stiffness has been shown to be an important factor in some models (Barry et al.
2017; Kalli and Stylianopoulos 2018; Sun et al. 2018).

The most important aspect of an MPS is the functional performance in the
particular application. A wide range of assay types have been developed and used
in MPS to demonstrate basic organ functions as well as disease- and toxicity-
associated responses. From a systems perspective, it is important to consider the
planned readouts in the design of the model. Readouts in MPS often include secreted
factors (proteins, cytokines, free fatty acids, etc.), imaging, biosensors, expression
profiling, metabolism, and spatial characterization. Sampling the media efflux or
from the media recirculation in microfluidic systems is typically sufficient to allow
assays of secreted factors, metabolites, and cytokines, although sensitivity may be
limiting in systems with high flow rates or large media volumes, key considerations
in system design. Imaging, especially with the many commercial and custom
biosensors (Newman and Zhang 2014; Senutovitch et al. 2015), can provide impor-
tant real-time functional readouts including cell tracking, protein expression, ion
concentration, enzyme activity, ROS, apoptosis, and other functions, provided the
device design supports online imaging. Imaging of the 3D spatial relationships in
the model can be important in establishing the organization of the cells, and
interrogating subsets of the cells, such as the growth of cancer cells in an organ
model of a metastatic niche (Miedel et al. 2019; Rao et al. 2019). For high-resolution
confocal imaging, it is important that the device is constructed with an optical-
quality, coverslip-thick “window” through which to image the cells and that the cells
in the device are within the working distance of the objective, which may be>1 mm
at 20� and <0.2 mm at 40� (Vernetti et al. 2016).

D. L. Taylor et al.



3.2 Example of a Liver MPS

The optimal MPS design will likely result from an evolution of models of increasing
capability with respect to organ functions and its intended use (Beckwitt et al. 2018;
Clark et al. 2016). As an example, the vascularized liver acinus MPS (vLAMPS)
model (Fig. 5) currently in use at the University of Pittsburgh (Li et al. 2018) started
as a micro-grooved prototype cast from PDMS and bonded to a glass coverslip for
imaging (Bhushan et al. 2013). Although the prototype was functional by several
metrics, the connections were unreliable, and the evaporation rate from the large
surface area of PDMS was too high. To address these issues, we moved the model
into the Nortis (Seattle, WA) chip, which is also cast from PDMS and attached to a
coverslip but encased in plastic with metal ferrules for tubing connections. The
robustness of this device provided a reproducible model for further optimization that
included, along with the primary human hepatocytes and endothelial cells, the
addition of human stellate and Kupffer-like cells. This model was shown to be stable
out to 28 days and provides multiple functional readouts. It responded appropriately
to toxic compounds (binding of test compounds to PDMS was tested); exhibited
canalicular efflux, a fibrotic response (Vernetti et al. 2016); and supported the
development and validation of multiple biosensors (Senutovitch et al. 2015). Further
development of this model included the addition of a space of Disse using a porcine
liver ECM, the incorporation of liver-specific endothelial cells, and alteration of flow
rates, by which the oxygen tension in the device could be controlled to simulate
oxygen zones in the liver, enabling the demonstration of zone-specific biology
(Lee-Montiel et al. 2017; Soto-Gutierrez et al. 2017). However, the oxygen perme-
ability of the PDMS made it difficult to create the continuous zonation of the in vivo
liver and complicated the use of the device for screening compounds, due to the
potential for absorption discussed above. Furthermore, although the model was
successfully used to demonstrate organ-organ interactions (Vernetti et al. 2017),
the lack of a vascular channel limited the prospects for direct coupling with other
organ models, a key application for a metabolically competent liver model. To
address these limitations, the model was transferred to the Micronit (Enschede,
Netherlands) organ-on-a-chip platform which is glass, supports continuous oxygen
zonation, and has a vascular channel for connection to other organs, as well as
introduction of circulating immune cells (Li et al. 2018). Presently, multiple liver
disease models, both stand-alone liver MPS and liver coupled to other organ MPS,
containing isogenic primary cells or iPSC-derived cells from normal and diseased
patients are in development. The liver biomimetic MPS will continue to evolve
based on technological advances.

3.3 Human Liver MPS Experimental Model of Nonalcoholic Fatty
Liver Disease

The liver performs ca. 500 critical functions making it vulnerable to many diseases
including NAFLD, a disorder that is rapidly increasing in parallel with the
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worldwide obesity and diabetes epidemics. NAFLD encompasses a spectrum of liver
damage ranging from simple steatosis (or NAFL) to nonalcoholic steatohepatitis
(NASH), cirrhosis, and hepatocellular carcinoma (HCC). Genetic and environmental
factors, as well as disease drivers such as inflammatory cytokines, including
adipokines, bacterial products, and metabolites originating from the intestine and
adipose tissue, contribute to the development and progression of NAFLD (Satapathy
and Sanyal 2015). The pathologic hallmarks of NAFLD include steatosis, inflam-
matory infiltrate, fibrosis, and hepatocyte ballooning, leading to decreased hepato-
cellular functions and eventually cirrhosis and HCC (Jain et al. 2015; Pacana and
Sanyal 2015).

The application of QSP to NAFLD starts with studies of patient data (Fig. 1a) that
have identified several NAFLD associated single-nucleotide polymorphisms (SNPs)
(Speliotes et al. 2011) and gene signatures. The most relevant and reproducible
SNP identified across GWAS studies is in the patatin-like phospholipase domain-
containing 3 (PNPLA3) gene (rs738409 C>G p.I1e148Met) which is strongly
associated with hepatic steatosis, fibrosis, cirrhosis, and HCC (Schulze et al.
2015). Despite its strong association with NAFLD, the functional significance of
the PNPLA3 SNP is unknown. A major limitation in the elucidation of a mechanistic
role of PNPLA3 in NAFLD has been the interspecies differences in its expression
and tissue-specific distribution (Anstee and Day 2013). In particular, PNPLA3 is
expressed predominantly in the human liver, whereas in mice it is mainly expressed
in the adipose tissue (Smagris et al. 2015). Therefore, human patient-derived MPS
are needed to study the pathogenesis of NAFLD and to test novel therapies. The use
of molecular manipulation technologies is currently being used to engineer human
IPSCs for specific gene knockouts and knock-ins to generate specific genetic disease
models (Wu et al. 2018).

Based on network inference (Erdem et al. 2016; Grimes et al. 2019; Lezon et al.
2006; Subramanian et al. 2005), molecular interactions and signaling pathways are
identified (Fig. 1b) that may be involved in the progression of early NAFLD. A
consensus gene network is constructed using published interaction information
(see Fig. 1), including regulation, protein-protein interactions, and functional
relationships that are used to define on the network a disease neighborhood.
Pathways containing members of the disease neighborhood are flagged as potentially
disease-associated. Potential DTIs in these pathways are computationally predicted
with a latent factor model such as BalestraWeb (Fig. 1c) (Cobanoglu et al. 2015),
and then predicted drugs are screened in the vLAMPS models (Fig. 1d), along with
compounds currently in development, to identify drugs that halt and/or reverse the
disease phenotypes.

The experimental strategy is to recapitulate the early stages of human NAFLD
progression (NAFL and NASH) in the vLAMPS experimental models using primary
human hepatocytes and non-parenchymal cells (LSECs, stellate and Kupffer cells)
from patients. The models are investigated over a 1-month period with and without
the addition of known molecular and cellular drivers of NAFLD progression. Early
NAFLD models are compared with normal liver models, along with clinical findings
in the MPS-Db (see below) using a panel of phenotypic/functional measures.

Harnessing Human Microphysiology Systems as Key Experimental Models for. . .



vLAMPS models are also post-processed to produce H&E stained sections to
compare the pathology with the original patient tissue. The resulting data are used
to create computational models of disease progression (Fig. 1e) that are iteratively
used to refine the selection of biomarkers and potential therapeutics (Fig. 1f).

3.4 Testing Drugs in Human MPS

Human MPS models are projected to have great potential to bridge the efficacy gap
between animals and humans by offering drug testing in a complex, physiologically
relevant human organ or multi-organ system. For many decades, animal models
have served the pharmaceutical industry well for testing single target therapeutics for
antibiotics, blood pressure control, or cholesterol reduction but were ineffective or
even misleading when testing compounds for complex human diseases such as
cancer, obesity, liver diseases, and neural degenerative diseases (van der Worp
et al. 2010). Although the biomimetic fluidic MPS platforms are not high-throughput
at this time, progress is being made in that direction (Satoh et al. 2017; Trietsch et al.
2013; Wevers et al. 2016). Importantly though, many biomimetic MPS models have
been tested and shown to be sufficiently robust and repeatable for routine use in
compound testing (Sakolish et al. 2018). Progress toward confirming correlation
between the test systems and human safety and efficacy is expected to reduce the
number of drugs that fail in clinical trials, despite promising findings in preclinical
test species (Cirit and Stokes 2018). Preclinical animal models for toxicity assess-
ment are still required, despite multiple examples of lead compounds that failed in
clinical trials due to toxicity and despite demonstrated safety in animal models.
Human MPS organ models and multi-organ models will increasingly be used along
with animal models for toxicology assessment and disease efficacy models. Finally,
biologic therapies such as peptides, proteins, antibodies, and cells are notoriously
difficult to assess for safety liabilities in the standard preclinical toxicology models
due to foreign antigen recognition and immune response. Here, again, human MPS
models will offer a convenient and species-specific method to assess off-target
liabilities.

3.5 Critical Role of the Microphysiology Systems Database
(MPS-Db)

To accelerate the development and application of MPS in the biopharmaceutical and
pharmaceutical industries, as well as in basic biomedical research, a centralized
resource is required to manage the detailed design, application, and performance
data that enables industry and research scientists to select, optimize, and/or develop
new MPS solutions. We have built and implemented a microphysiology systems
database (Gough et al. 2016) which is an open-source, simple icon-driven interface
as a resource for MPS researchers (accessible at https://mps.csb.pitt.edu). The
MPS-Db enables users to design and implement multifactor, multichip studies,
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capture and standardize MPS experimental data and metadata (description of the
experimental design and conditions), and provide tools to analyze, model, and
interpret results in the context of human physiology and toxicology. The MPS-Db
is designed to capture and aggregate data from multiple organ models using any type
of platform from microplates to sophisticated, microfluidic devices and associate that
data with reference data from chemical, biochemical, preclinical, clinical, and post-
marketing sources, in order to support the design, development, validation, and
interpretation of organ models. A key benefit of the MPS-Db is the standardization
of metadata and data, which simplifies intra- and inter-study comparison of the
results for testing and validating the performance of MPS models.

The vision for the MPS-Db is to support all MPS technologies, from organ model
design to applications. Portals have been developed to aid in the design of organ and
disease models by linking to databases to collate information on organs or disease
biology, along with MPS data. This new information, together with the existing links
to compound and clinical information, enables the user to more efficiently design
and analyze proof-of-concept studies, in order to establish the model performance.
Independent validation of the models is supported by tools to design studies, for
example, by selecting compounds and concentrations to test and distributing those to
the chips in the study, identify the best or most relevant clinical readouts, and apply
statistical tools to assess the reproducibility of the model. Links to clinical data
enable evaluation of clinical concordance and developing physiologically based
pharmacokinetics (PBPK) models that will provide a basis for predicting exposure
and clearance.

In summary, the MPS-Db supports data providers (e.g., academic and industry
researchers) with tools to capture, manage, and disseminate data from experimental
models, and data consumers (e.g., researchers and regulatory agencies) with a
platform to analyze data and interpret results in the context of human physiology,
and design computational and experimental models and studies. The variety and
types of data collected and incorporated into the MPS-Db allow scientists to build
predictive tools that will link the pathways or molecular events of drug toxicity and
efficacy to higher-order pathways, cells, tissues, and organs. The MPS-Db is an
innovative advancement for the MPS community and is the first and only publicly
accessible, comprehensive resource for sharing and disseminating data and informa-
tion on MPS.

4 Summary and Conclusions

The last decade has seen an explosion in the number of computational studies in the
field of quantitative systems pharmacology, with the realization that current
challenges in drug discovery and development require approaches well beyond
traditional chemically driven efforts at the single-molecule level. In parallel, there
has been progress in experimental models from classical animal models to human
microphysiology systems (MPS) based on the use of human primary cells, adult
stem cells, and/or iPSCs, as a powerful tool to mimic not only the structure and
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morphology of human cells, tissue, and organs but also their biological or physio-
logical functions. The combined use of these novel computational and experimental
methods, complemented by classical PK and PD approaches, QSAR analyses, and
ADME-Tox assessments, holds promise for overcoming the attrition effect that has
long stalled progress in rational design of new therapies.
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